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FOREWORD

This is the final report on the Guidance/Navigation Requirements Study

(G/NRS), which was performed for SAMSO, Air Force Systems Command, USAF,

under contract F04701-75-C-0112 by Logicon, Inc. The study was initiated
in May of 1975 and completed in April of 1978.

General G/NRS objectives were twofold:

m 1) To develop and maintain performance models for both flight
test and operational versions of an Air Force Maneuvering

I Reentry Vehicle.

2) To use these models to assist the Air Force in establishing
G/N subsystem requirements and options for a flight test

vehicle and investigate the performance of an operational

I MaRV.

This report is segmented into three volumes. Volume I presents an over-
view of the reentry system performance analysis problem and summarizes the

results of the entire effort. Volume II corroborates the summary pre-

sented in Volume I with documentation of the detailed analysis performed
during the course of the study. Volume III contains appendices which des-

m cribe in detail the salient analysis techniques employed during the study.

Logicon wishes to acknowledge valuable technical assistance provided

by the principal Air Force and Aerospace participants: Major J. T.

Pearson and Capt. J. A. Davis and Messrs. P. Kruh and H. E. Whiteside and
i Dr. I'. 0. Rogers. The authors of Volume III are Messrs. S. M. Archer,

and E. F. Nicholson, and Drs. C. L. Bowman, 0. 0. Sworder, and S. B.

I Vidor. Programming support was provided by Dr. F. A. Rohatsch.

K Nill Whill S1c0IIof F.
$!O11.11 SerllOn ,
iiisetio Euge'4e F. Nic ol son

IIH :;:: U~:E(]1•)Project Manager

IJUSH 1C iUN ...................... Logicon Inc.

mN • U •iRrOION 'AVAILABILITy Y 4O$ - 1-
IJ'l AAW L. •, v o Dt PL.OAL_.
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APPENDIX A.

IMU PERFORMANCE MODELING AND EVALUATION

A mathematical description of the errors inherent in utilizing

a sensor capable of measuring the non-gravitational acceleration in a
navigation system is described in this appendix, The discussion is divided

into three segments. The first pertains to the errors in the navigated

state produced by a general acceleration measurement error. The second seg-

ment discusses the sources of the error in the measured acceleration. The

third segment addresses statistical processing of the calculated navigation

error to obtain deployment errors, target miss, etc.

A-i. NAVIGATED STATE ERRORS

A linear analysis of the navigation errors associated with in-

accurate acceleration measurement considers the following differential

equation involving the navigated state:

d 2F
d r (A-1)

where

Sis the acceleration sensed by the navigation system

g£r) is the gravitational acceleration

r is the position component of the navlgated state.

To obtain an equation relating small errors in the acceleration

terms to position errors, let

u(- - •(F) ÷ •F)!

r * rN F (A-2)

a a N +•

A-i

. .. . . . . . .
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where

rN

-8N' are the nominal position and acceleration (measured

and gravitational) along the phase space profile•N(r))

dF,
are perturbations in position and acceleration.

Substituting (A-2) into (A-1), expanding and rearranging:

( ýN _' N(h-N) + S - 6r0s("F) - Sý(F) + si
(A-3)

Products of perturbations have been ignored. Note that the parenthetical

term in Equation A-3 is the differential equation describing the profile,

and is therefore zero.

Considering a spherical earth gravitation field for the ý(r)

term, Equation A-3 becomes

" GM 3rN FNsr + F r rNNI •N•a + Sý(F) (A-4)

This differential equation which relates the error in the navigated position

to errors in the measured and gravitational acceleration can be numerically

solved to obtain the navigation system errors.

The forcing functions (Si and Sj(F)) represent the errors inher-

ent in the measurement of the inflight acceleration and the computation

of the gravitational acceleration.

The Solution to Equation A-4 yields the position error

associated with an acceleration measurement error. If the velocity

error is also desired, two first-order equations can be formulated

A-2
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from Equation A-4 by the substitution Sv Sr. The two resultinq equations

can be solved and &v and SF determined.

A-2. ACCELERATION MEASUREMENT ERRORS

The errors in the acceleration measured by the navigation sensing

unit are discussed in this section. The section is segmented into three

segments, each of which describes a different source of the acceleration

measurement error. The first segment discusses the measurement errors
associated with the accelerometers, which measure the non-gravitational

acceleration along their sensitive axis. The second segment formulates

the effect that gyro errors have on determining the orientation of the

accelerometer sensitive axes relative to a known computational frame.

The third segment demonstrates some of the effects structural compliance

has on the transformation of the measured acceleration in accelerometer

coordinates to navigation computation coordinates.

A-2.1 ACCELEROMETER ERRORS

The errors inherent in the actual measurement of the non-

gravitational acceleration are modeled as an acceleration error along

each of the accelerometer sensitive axes. This error is then transformed
into computational coordinates utilizing the accelerometer to navigation
frame transformation which describes the geometry and orientation of

the accelerometer cluster. This transformed error can then be handled

as described in Section A-i.

The equation performing the above is

sw6aN 1 ArN 6
/21i
\3i/

where

SaN acceleration error in navigation coordinates

A-3
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EATN] - accelerometer to navigation transformation (may be
time-varying)

dai a magnitude of the acceleration error for the ith

accelerometer

i Kronecker delta function

The acceleration error magnitude may be from several sources including

bias errors, scale factor errors, misalignments and quantization.

For example, if a particular orthogonal accelerometer cluster

was inertially held and the accelerometer errors were modeled as bias

and scale factor errors, the modeling equations would be:

N EATN](ox)

3Z

-N )

61N5 *sCATN](by) ~2a 0

0

u sj N [ATN)(0

A-4
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where

bX, by, bz are the bias errors

Sx, SY, Sz are the scale factor errors

axaay, aa are the acceleration components along the

accelerometer sensitive axis of the x, y,

and z accelerometers

SaN is the ith error in navigation acceleration.

Each SaN is treated separately (i.e., a Sr and 6vN integrated for each

of the six errors) to determine the miss associated with each error source.

A-2.2 GYRO ERRORS

The error caused by the gyros in the transformation of the accel-

eration measured by the accelerometer cluster into the navigation frame is

discussed in this section. The errors arise due to the drift of the gyro

stabilized referenre frame, which may either be an actual inertially-stable

structure of a computational reference derived from rate (or angle incre-

ment) measurements by the gyros. In either case, the acceleration error

can be calculated from an accumulated misalignment caused by gyro drift.

The acceleration error associated with gyro drift is represented

by:

EaN ,][ATN] iA -a 'N

where

[€ is the gyro derived misalignment matrix

aA is the acceleration measured in accelerometer coordinates

aN is the acceleration computed in navigation coordinatus

A-5
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The gyro-derived misalignment is the first integral of the gyro drift

rate, which is expressed as:

6CN * GTN)~S;G

where
•,7+iiI- [GTN] is the gyro-to-navigation transformation (either.' i

a constant or an integral of the gyro rate)

6wG is the error in the rate about the gyro input

axes

The derivative of [] is

where F0 d~ Wy
[aw Nl is the cross product matrix [ wNz 0 -SW Ixj

L$'WNy 6wNx 0

Note that if, ihitially, [0(0)] ( 1i], then

[O(t)] is of the form III+ [f(oN]

where [(MN] represents the contribution of the 6:TN to o]at time t.

However, if products of terms involving 6UN ar! ignored I

aw N[ ] + 1o01'
and [ ..'o

[(t)] df [N ()] dr + (

0

A-6

7

....................................................................................



LOGICON

Thus, the misalignment of the accelerometer-to-navigation transformation

can be computed from the drift rate errors associated with the gyros.

For example, consider a constant fixed drift error of an ortho-

gonal triad of initially-stable single degree-of-freedom gyros coincident

with the navigation coordinate frame. In this case

i D1

where
i the drift rate of the ith gyro

0I -the fixed drift coefficient of the ith gyro

Therefore,

'5N2 ($x) D (Dy

'wN2 0 0Qy

and 
°-

0Dx t

[-2]
Dy

A-7
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-0 t

Finally,

6a U I a z Dx t
a y

\ox

si3 a x Ozt

A-2.3 STRUCTURAL COMPLIANCE

This discussion of the structural compliance is not detailed or

involved. Basically, only the effect of the compliance of the accelerometer

relative to the navigation frame is considered. It is recognized that this

is only one compliance out of many which exist but the ideas presented re-
garding the treatment of accelerometer bending can be applied to other
bending modes as well,

Essentially, all structural compliance of the mounting frame

of the platform results in the accelerometer sensitive axes oriented in
an unknown direction. The misalignment can be considered small and modeled

as follows

a- Cijkajak

A-8
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where
whe a is the error of the ith accelerometer measurement

due to structural compliance

Cijk is the coefficient of bending of the ith accel-

erometer sensitive axis toward the jth direction

by acceleration along the kth direction

ajak acceleration components.

Depending upon the test data available, aj and ak above may be platform

accelerations or accelerometer accelerations, The acceleration error

6a, is treated in exactly the same way as in Section A-2.1.

A-3. STATISTICAL PROCESSING

The processing of the position and velocity errors calculated

in Section A-1 is discussed In this section. Included will be the pro-
pagation of the integrated position and velocity errors into CEP.

The position and velocity errors determined as described in Sec-

tion A-1 for each of the error sources types discussed in Section A-2 re-

present a 6 X N matrix (where N represents the number of error terms).

This matrix will be denoted aS , as it reflects the sensitivity of state

(position and velocity) to unit error source magnitudes, i.e.,

as [" "I

where

I are the position and velocity errors
S7 • associated with the ith error

It is important to note that as a direct result of the linearization of

the error equations presented in Section A-i, a-is linear, That is,
S

A-9
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if a particular error coefficient doubles, the state error associated with

S
into state errors; i.e.,

as - dES

The differential equation stated in Section A-1 can be solved along any

nominal path to produce a a at any point along the trajectory. Given

this sensitivity, the miss associated with that trajectory point can be
calculated from the above equation for 6S. For example the covariance

of aS is

As " E(S6STS) " E(ES 6Es T) )
S Ss

A' as A __S

S rs AS R

where
Aa 'represents covariance of a

E( ) represents expectation

Given the covariance of the state errors, statistical quantities such as

CEP can be calculated.
For example, if the CEP is desired, -as must be calculated

from navigation initiation to impact. The covariance of the state error
is now determined from the covariance of the error sources. The state
covarlance can now be mapped into a downrange, crossrange time coordinate
frame by an orthogonal rotation followed by a projection of the altitude

errors along the nominal impact velocity, viz:

A-l0

I.i
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VD

7S 0 1 V, '3x 3

0 0 "•

01 TA SI -5T

where

al is the mapping of state errors into impact

coordinates (downrange, crossrange, and time)

VD, VC, are the nominal velocity components along downrange,
VH crossrange and altitude

T is the orthogonel 3 x 3 rotation of navigation coor-

dinates into downrange, crossrange and altitude.

The CEP can be approximately calculated as

CEP - 0.59

where
Aij is the element of A1 in the ith row of the Jth

column.

A-11
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APPENDIX B
CALIBRATION AND ALIGNMENT PERFORMANCE

EVALUATION TECHNIQUES

B-1. INTRODUCTION

The analytic technique that estimates the accuracy of calibration
and alignment is described in this appendix. Basically, the lower bound ac-

curacy of a calibration scheme is estimated with optimal Kalman filtering

techniques. The deviation of the actual performance of the calibration

technique from the optimal Kalman performance is assumed small. This as-
sumption is made because if the optimal technique is substantially more

accurate, it is assumed that it, or a sufficiently accurate suboptimal
mechanization, would be implemented. With this simplification, the analy-

sis of many calibration techniques can be case in a similar form and

quickly performed,

To utilize the Kalman filtering techniques in the analysis of a

calibration scheme, the physical process must be described with a linear
state space model. Thus the dynamics of the errors must be described by a
linear differential equation, and the measurements taken during the cali-

bration sequence must be linearly related to the errors, These two require-

ments can be written in the form:

• Fx + Gw (B-i).

z Hx + v (B-2)

where

x is the state vector describing the hardware errors

F,G,H are model description matrices

v, w are random (white noise) disturbances.

The model description matrices (F. G, and H) are generdlly complicated

functions of the orientation of the instrument being calibrated and the

B-I
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time derivation of the measurement. However, these matrices can be corm-

puted numerically with little difficulty.

Equations B-I and B-2 describe the system dynamics but do not

directly determine the calibration error. However, Kalman filtering can

make use of the same model description matrices to perform a covariance

analysis of the calibration sequence.

Kalman filtering descriptions are found in many books (see for

example, Gelb or Meditch) and it will not be discussed here in any more

detail than to write down the discrete covarlance equations; viz:

Time propagation: P.k , ck-I+T + T +

Measurement: pk +) (I . KH)Pk(.) (B-4)

where

K is the Kalman gain

K a Pk(-)HT(Hpk(.)HT + R)"i

o is the state transition matrix from the k-i th measurement

to the kth

pk(.-) is the state covariance prior to the k th measurement

pk(+) is the state covariance after the k measurement

H is the observation sensitivity matrix

R is the observation noise covariance

Q is the system process noise matrix

Equations B-3 and B-4 calculate the covarianco of the best estimate of

the state errors after each measurement.

The analysis of a calibration sequence is threefold. First, the

errors of the hardware (gyro drifts, accelerometer biases, structural

B-2
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compliances, gimbal readout errors, etc.) must be identified and error

models defined (see Appendix A). This describes the hardware mathemati-

cally. In addition to identifying the hardware errors, the initial un-

certainties in the model coefficients must also be estimated. These can

come from hardware tolerance specifications, previous calibrations or

engineering estimates. Finally, the observation sensitivity matrix, H,

the state transition matrix, s, and the system process noise matrix, Q,

can be calculated for the error models defined and the calibration

sequence desired. The state covariance matrix can then be calculated

for the measurement sequence of the calibration and alignment technique

under investigation.

For example, consider the calibration of one accelerometer whose

errors are a', exonentially correlated bias noise, a bias and a scale
factor error. Tt,e error equation for the accelerometer would be:

S a-n+ b + sa

where

8a is the acceleration error

n is a time correlated bias

b is the bias
s is the scale factor error
a is the sensitive axis acceleration

Assume also that the initial noise, bias and scale factor uncertainties

are an' "b and SS, respectively, the available measurement is velocity.
and the calibration sequence is the usual up-down accelerometer calibra-

tion. For the above system the stiste variables are:

MI

The initial covariance is therefore

B-3
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"0 0 0 0*.

2 2
0 0 0b 0

0 0 0 as 2
e o v

The state transition matrix can be calculated from the system differen- Itial equation-, viz: i1

-FX

where

0 1 1 a
0 -1/-r 0 0
0 a 0 0

0 0 0 0

which yields

.I (1-e t/T) t at"

O(ta) a eFt = 0 e-t/T 0 0

0 0 1 0

0 0 0 1

The observation sensitivity matrix is

H - (1, 0, 0, 0)

The measurement noise is

Ru 2

where ov is the quantization error of the accelerometer. Finally, the
process noise is

B-4
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Q(t) t o• ')ý (t')dt' :

0

where
"0 0 0 0

q2  a a0 q 0 0qn

0 0 0 0

o 0 0 0
which yields

"Q11 Q12 o 0

Q(t) Q12  Q22  0 0

0 0 0 0
0 0 0 0

where

Q1 q 2 T2[t 2T(l e- t'/) + j. (1 e-2et/T)]

q 2 [ -t/l .' (1 -e2t/t)]Q12 " n.

2Q -2t/t)Q22 "qn-f(l e

The measurement sequence can be analyzed as follows. First, measure the

velocity integrated by the accelerometer after T seconds in the up posi-
tion. The initial covariance must then be propagated T seconds as:

Pl(-) - *(T, g) P(-),T(T, g) + Q(T)

The measurement yields an updated state covariance; viz:

p(+), [I Pl(.)HT(HPI(-)HT + R)1'H ]Pi()

B-5
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The second measurement may be performed in a similar fashion; viz:

P2 ) 2 (T, -g) P (-)..T(T, -g) + Q(T)

P2 (+) 1 - P2 (-)HT(HP2(-)HT + R)'IHp2

and the resulting covariance P2 (+) yields the statistical information

of the calibration procedure.

B-2. SHIP ALIGNMENT

The analysis of the alignment of the SHIP followed the general
procedures outlined in Section B-1. The hardware was modeled with the

87 errors described in the SHIP inflight error analysis, The result-

ing model description matrices were:

F 0 no time dependence
G-O

R * measurement noise matrix

13 x 87 for Singer Two-Step
3 x87

H-

for gyro compassing
I x 87

where

are the sensitivities of velocity sensed by the SHIP

to the error models defined for SHIP.

•- are the sensitivities of the drift of the gyrocompass
gyro to the error models defined for SHIP.

In addition, the process noise between measurements consisted

of the effect that the gimbal resolver uncertainty had on alignment

about up.

R-6
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The SHIP was simulated in each of the required alignment posi-

tions to calculate H using linear error analysis methods (see Appendix A)

and the necessary Kalman processing performed (Equations B-3 and B-4).

The initial covariance for the SHIP alignment analysis was the

mature post calibration error budget.

B-3. DUAL P5 CALIBRATION

The analysis of the calibration of the Litton Dual P5 inertial

reference system was abbreviated by considering the calibration of only

one of the two platforms. The calibration of the other platform was

assumed identical. Thus the gyro and gimbal errors were modeled with

46 error sources. The model description matrices were:

OF -0 no time dependence

R u gimbal resolver rate error covariance

Ha)

2 x 46

where

E•S1 are the sensitivities of the inner and outer
gimbal resolver rate readouts to the error

models defined for the P5.

and the gimbal resolver rate errors were those given by Litton for the

PS platform. The measurement sequence was then simulated and the esti-
mates of the calibration accuracy determined.

B-7
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APPENDIX C

SYSTEM PERFORMANCE EVALUATION

C-i. INTRODUCTION

In modeling the accuracy of a maneuvering reentry system, the

mission was divided into four phases:

* Prelaunch

* Boost

0 Freeflight

e Reentry

The last three phases of flight are illustrated schematically in Figure

C-i. The objective is to guide the reentry vehicle to a preselected

target. During each phase a particular function is performed to achieve

the final objective. In the prelaunch phase, the coarse reentry IMU

alignment is determined. During boost, the booster guidance system de.

ploys the reentry vehicle on the trajectory to its reentry point (300,000

ft). In addition, the reentry guidance system is calibrated inflight,

(particularly position, velocity and platform alignment). In the free-

flight phase the initial reentry state is estimated. During reentry,

the reentry guidance system navigates from the initial reentry state to

the target. The error analysis program handles each mission phase

separately.

C-2. ERROR PROPAGATION

To calculate system accuracy, a linear system error analysis

was performed. Since standard linear error analysis was not sufficient

for our purpose, estimation theory was used. The standard analysis as-

sumei an error relationship of the form

C-I
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where

ac is the error in the state vector (RIMU position,

velocity)

AE is the initial error source vector (RIMU platform

alignment, accelerometer and gyro errors, etc.)

is a matrix determined by integration of error
-equations on a nominal trajectory

The covariance of the error is given by

* cov(41) -(~cov (&ET
3E

where superscript T indicates matrix transpose. To obtain , a simulation

of the system is needed. Each error source Ei is perturbed by AEi, and the
effects are integrated over the entire trajectory to obtain the sensitivity

Unfortunately, this standard linear error analysis does not easily3Ei

accommodate external mea'surements. Since it is desired to use external

measurements, such as a match with the booster IMU (BIMU) or GPS

measurements, the technique of linear estimation theory was used. However,

the standard linear error analysis method was Used to obtain the matrix

" for incorporation into the analysis by estimation theory.
aE

With linear estimation theory, the system is described by a

state vector Xwhich includes all information relevant to the state

of the system, such as position, velocity, and error sources wnich

C-3
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affect the system. Typical error sources for the case of the BIMU navaid

are shown in Table C-1. If GPS is thenavaid, then reentry vehicle

clock errors and GPS satellite errors are also Included.

The system model assumes that calibrated values of the system A

parameters are compensated inflight. Therefore, to analyze optimal sys- ¶
tem performance, the state vector is linearized about the calibrated,

values of the system parameters. The relevant equation is

A *Cx I(t) •xi(t) - xi~t)

where

xA(t) 'Is the actual value of the Ith system parameter at

time t

X (t) is the value of the I th system parameter at time tiIas stored in the flight computer

SXi(t) is the ith system error at tim.e t

For linear error analysis •SX(t) is used as the state vector. The

composition of the state vector for the case of a BIMU navaid is shown

in Table C-2. Note that the BIMU and the G&G errors are considered

separately from the RIMU errors, This allows separate treatment of each

portion of the state vector.

The linearized state vector is assumed to satisfy the linear
differential equation

6X(t) * F(t)6X(t) + r(t)_(t) (c-2)

c-4



r
LOGICON

Table C-i. System Error Sources

Reentry IMU (RIMU)

* Al i gnment

* Platform (compliance, gimbals)

0 Accel erometers

* Gyros

Booster IMU (BIMU)

* Alignment

* Platform (compliance, gimbals)

* Accelerometers

* Gyros

Geodetic and Geophysical

* Launch and target location

* Earth model (gravity and shape)

I

SC- 5
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Table C-2. System State Vector

S .I ECI position error
L • ECI velocity error

R "RIMU alignment errors

ER RIMU platform errors
ERIMU" "'

EAR RIMU accelerometer errors

EGR RIMU gyro errors

ERIMU

4BIMU BIMU alignment errors

E- &G -_P BIMU platform errors

BIMU "
E• BIMU accelerometer errors

E- BIMU gyro errors

E " E ] G&G errors

C-6
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where

SX(t) - state vector at time t

F(t) - process matrix

ý(t) a random disturbance vector
r(t) a disturbance matrix

The covariance of %.(t) is given by

where E symbolizes the expectation operator. The Dirac delta function
d(t-t') is nonzero only if t - tV. The covariance matrix has a delta

function dependence since w(t) at time t Is uncorrelated with w(t') at

a different time t'.

Integrating Equation C-2 It is found that the state vector
propagates in time by a linear transformation with a superimposed random

disturbance:

"- + l- - (C-3)

where

whee-i linearized state vector at time i-i

ýi-l a state transition matrix

-i.1 m random disturbance vector

G. i •a disturbance transition matrix

The covariance of Ji Is given by

E(i WjT) Q151 j

where
I i I - j

•ij " 0 if 1 0 J

C-7
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The Kronecker delta Sis is used for the discrete time case and indicates

that Wi at time i is uncorrelated with W j at a different time J.

The state transition matrix can be shown to satisfy the differ-

ential equation

$(t) - F(t)O(t) (C-4)

where F is the process matrix of Equation C-2. The Initial condition

on * Is

O( to 0

where I is the identity matrix, The solution of Equation (C-4) for
constant F is

0(t, t) e F(t - t0)

where 0(t, t0 ) Is the state transition matrix from time to to t.

The discrete noise covariance can be expressed in terms of the

continuous case as

GK.1QK.IOK.1 T,(tk, T)G(T)Q(t)G T (T),T(tk, r)dt (C-5)

tk-1

Measurements are taken at discrete time points, and they are

assumed to be linearly related to the state vector by

Z- " 8X + %) (C-6)

where

SZ~ • linearized measurement at time i

C-8
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H1  * measurement matrix

- random measurement noise

The covariance of is given by

E(•Ij)• Ri~j=

The linearized measurement is related to the actual measurement by

where
z - actual measurement

Z_• a nominal measurement expected if state vector
equaled Xi

Using the discrete time formulation, the state at time i is
estimated from an earlier estimate at time I - 1 by

S~A

Sxi 4 1.4i1-1 (C-.7

where the symbol X indicates the estimate of X. The covarlance P is

propagated in time by

T + T(C-8)

The state is updated after a measurement with the standard Kalman filter:

+ i+ K 1 [611  Hi H 1  11 (C-9)

c-9
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The corresponding covariance update is

P (1 - Ki H1 )Pi (C-O)

where K1 * PI'H T(HIP IHIT + RO)' is the Kalman gain and the super-

scripts + and - Indicate before and after a measurement..

The error propagation equations require the calculation of the
state transition matrix s, From Equation C-2 it is seen that knowledge

of the system dynamics determines the process matrix F. The process
matrix in turn gives rise to the state transition matrix (Equation C-4).

Therefore, the first step in calculating the transition matrix is to
deternine the process matrix from the system dynamics,

The differential equation of motion solved by navigation is

where

Sm position vector

V - velocity vector

a sensed acceleration vector

GM a earth's gravity constant

However,

v-vA A 8v

PaPA +Sp

where superscript A signifies the actual value (assuming no errors)

and S represents an error term about the actual value.

C-10
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Therefore,

+ .3GM (,SEEA)kl 6Gt4P

Substracting out the actual terms,

-GM~ 3GM ~ ~.p~A 'SGM A

the term 6S is due to alignment, platform and accelerometer errors:

L + sAp + LA4

- where

a a platform alignment errors

SA4 a sensed acceleration errors due to platform errors

sAA a sensed acceleration errors due to accelerometer

errors

The 6AP term is modeled as a function of the sensed acceleration and the

platform errors:

(WAP)x - fx (AS, ER)

(AP)y a fy (A6. E40R)

(SAp)z (As 4R)

c-11
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Similarly, 6AA can be written as

(SAAA) x g, ER)

(6 Y gy

A)R!i(SAA) " 9, (Ls. i"k)

The sensed acceleration errors can therefore be expressed as

6&S "- • d$ S + f, 4E R + g AR
94

where f and g are matrices given by

3&p

g(
3EA

-As

Writing the previous equation of motion -In terms of the indi-
vidual components, the errors In RIMU position and velocity propagate

in time by

U SVX

•Pz z (c-il)' •px2

*V • ta + )6Px + aPxPySPy + ax~z'P z

+ A fxj(EpR)J + EXj (EAR)
SZ60Y " AS Yz jj P A J

+ YP X6(GM)

C-12



r'T

LOGICON -PYxPx_______Yz___Z__

,'S y = ++ + 6Py 2 )SPy +4

+ A SXSz - ASz6Ox + YJ (EpR)j 4 E gYj(EAR)J

+ YPy Y(GM)
a V z Pxx 6P+ OPYP 6 + (a + aPz2)dZ

+ ASyOsx - ASX 6 Y + E fzj(EPR)j + E gzj (EAR)j

+ YP z (GM)

where
GM

3GM

INP

*Yu

To keep the equations relatively simple, a spherical earth was assumed
for Equation C-11. However, in the actual simulation, higher order
spherical harmonic gravity terms were included in addition to the GM
term given in Equation C-11. The alignment in the above equations is

expressed in the same coordinate system as the position and velocity
errors. By means of an orthogonal coordinate transformation, the
alignment errors can be easily expressed in platform coordinates even
if it differs from the position and velocity coordinates.

C-13
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The RIMU platform alignment errors are modeled as functions of

the sensed acceleration and the gyro errors:

6ý, a 'A E R)

. Oy = hy (AS, ER)R (C-12)
u h (AS, Ri: "z " z ( 'G%•

The RIMU platform, accelerometer, and gyro errovs are modeled as constants:

E 0i*R

"" 0

R 0

Changes in these quantities are handled by including process noise

(Q matrix). Since the BIMU errors are modeled as error sources (i.e,

initial values), these errors are also constant in time:

*041BMU"0

Finally, the G&G errors are modeled as constants:

ýE_&G - 0

The F matrix can be determined from the relation

.& Fx

C-14
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Decomposing the state vector into its components

ul F l F F14  S

ýE-IMU 0 F22  0 0 RIMU

(C-13)

EBIMU 0 0IMU

6~

FI1 and F12 are obtained from Equation C-il and are given in Figures
C-2 and C-3, F2 is obtained from Equation C-12 and is given in Figure

C-4. Because G&G errors cancel in a-BIMU/RIMU measurement, the F14 term

was not included in the calculation. Position and velocity errors due to

to G&G were added In near the end of the calculation (after all measure-
ment updates) to obtain system performance. Note that for the GPS case,

G&G errors can be estimated from pseudo-range measurements. An F14 term

was therefore included for the GPS analysis.

To propagate the covariance in time, the standard discrete form

is used:

K+ K "KPK + GKQKGK

where 4,, is a 'solution of

0(t, tK) - F(t)¢(t, tK) ; O(tK, tK) K I

For a constant F, the solution of the transition matrix equation is

FAt

C-15
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0 0 0 1 0 0

0 0 0 0 1 0

o 0 0 0 0 1

F + B)P2 OP P OPXP 0 0 0

OPxP (CL + a)P2 PyPZ 0 0 0

OPxP4 aP + B)P2 0 0 0

P4,
3GM

IP1

Figure C-2. System Process Matrix Fl, AIU
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0 0o0 0 .... 0 0 ---- 0 0 0
0 0 0 a ---- 0 0 .. .0 0 .. .0 ,

0 0 0 .---- 0 0 0 0 0
Fl2 0P P A A 0..

"A f .... fM gj---- .... g0: A S -A5  31" A A"ASz SX l 21 "" 21M g2"1 . .g'N 0 ..

A- 0 I PA A 0.... 0f S31 ---- f 3M g31 .. 3N

I*

i P •) si

flj •)(Ep R)j

A i

g (EAR)j

(EpR)j represents the jth RIMU platform error

(EA R)j represents the jth RIMU accelerometer error

Figure C-3. System Process Matrix F12
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000 o...o o...oG ,•---
11 8

00 0 0 --- 0 0 --- 0 h02--- h2

00 0 --- 0 0 -0 0hG

0 0 0 -0 -- 0 0- 0

0 0 0 --- 0 0-- 0 0--0

0 0 00---0 0---0 0 0

R th

00 Oj ,, -O 0

(EGR)j represents the jh RIMU gyro error

Figure C-4. System Process Matrix F22
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For variable F, a small time interval can be chosen during which F is

approximately constant. * is then approximated over the interval At as

the product
n Fiat/n

411

where Fi is the average F over the appropriate subinterval. The
exponential can be further approximated as

i-o -- i ,n

Thus,

SjiW]
17 n C-14)

The quantities n and m are chosen to be sufficiently large so that the

approximations are adequate.

C-3. INFLIGHT ALIGNMENT

The Kalman filter (Equation C-10) is used to evaluate the per-
formance of the alignment update. In this appendix, the case of a
measurement using the BIMU is described. To take a specific example,
a velocity measurement is considered, A similar procedure is used

for a position measurement. The velocity measurement is defined by

Z V RIMU - VBIMU

C-19
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The individual velocity terms can be expressed as
: R

•RIMU "-ACTUAL + •RIMU + Y-•UANT + 'G&G
+ .~ B

BIMU "ACTUAL + 6V-BIMU + dUANT + 'G&G

where the velocity errors due to G&G and due to quantization are

separated from the other velocity errors. The measurement equation is

thus:
R

* - ~Y.4AN (C-15)Z_ 6YIMU 641IMU + 'YUANT IQUANT (-S

Since all BIMU errors are treated as constant error sources (i.e. as

initial values), the BIMU velocity error as a function of time is given

by

14 IMU (t) • . (t) EIMU (C-16)

where the derivative indicates the sensitivity of BIMU velocity error

to initial sources. Substituting Equation C-16 into Equation C-16, we

arrive at
3v R

U ~jJ(t) - -K (()CBI17)~
- -B4MU (t) EBIMU + '-VUANT (C-7)

"I-UANT

where t is the time of the measurement (thrust termination for this
study). From Equation C-17 the measurement matrix is seen to be

*F 0 0v(t)
H 0 0 0 1 0 0 0-

10 0 001 0 1~ 1
and the noise y is given by

R B
• •LQUANT " dYUANT

C-20
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The covariance R is

R" q 0

0 0 q

where
R a

q co (�QUANT YQUANT)

Substituting the measurement and noise covariance matrices Into the

Kalman filter (Equation C-10), the state is updated, yielding an improved

estimate of RIMU platform alignment, position, and velocity.

C-4. REENTRY INITIALIZATION

After the last measurement has been made, Equation C-8 is used

to propagate the covariance matrix to reentry. So far, position and
velocity errors due to G&G have not been included for the case of the

booster navaid. (F 14 of Equation C-13 was not included in the

calculation for the BIMU navaid case.) Therefore, at this point position

and velocity errors due to G&G are combined with errors due to other

sources to obtain the total position and velocity error. The covariance

matrix at this point represents the full covariance of the state at

reentry for the case of an optimal state propagation method such as a

simulation. If other propagation methods Are of interest, additional

errors due to the particular technique must be included.

C-21
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C-5. INCORRECT SYSTEM MODELING

The discussion so far has centered on calculating the covariance
for the optimal case in which the complete system dynamics and measurements

are modeled correctly. Due to computer restrictions or lack of knowledge

of the system dynamics, it is not always possible to simulate the system
exactly. In this situation it is still necessary to be able to evaluate

system performance, although the standard equations for optimal estimation
no longer hold. The appropriate equations are given here without proof.
A derivation can be found in Section C-7.

The true system dynamics are given by

9J -1 J÷ 4 - 1 -i-1 (C-iS)

The true measurement is related to the state by

Z•• H X + YJ (C-19)

The covariance of W and xi are Qj and Ri respectively. The suboptimal

filter assumes the model to be

*X - X + a~ W (C-20)2-1 2 j1!-1 = J.I•-1 Iczo

Z * H X + (c-21)

where the covariance of and y, are respectively Qj and Rj, The
starred quantities do not necessarily equal the unstarred quantities

modeled in Equations C-18 and C-19. The equations used by the filter to

update the state and covariance are
At * *

(C-22)
X X + K Z- H4-j 9-j aL i =-i

C-22
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, , , T , , .T
P " *.-I Pj-i 'j- + 'j-i QJ-i GJ- 1

P + (H P*.H

Since the filter does not model the system correctly, it produces a

suboptimal estimate of the state, In addition, the quantity P calculated

by the filter does not represent the true covariance of the state, The

true covariance Is propagated in time by the following set of equations:

T*

*~-1 K-1.c-I +,K v A V*KI I *TI
PK "•K- 'KK-1 K-+1K

*T T T
VK " OK-1 VK-1 K-1 + IK-1 UK-1 'OK-1 -GK-l IK- 1 GK-

UK 4K1 K K-1 +K-1 K-1 .GK-1

After a measurement the true covariance Is given by

.+ * * * *)T * * -T T *T
K (I - K K K HKK - ( - KK HK) VK KH KK

K *H V ( K* * *K K K K HK) + KK HK UK AHK KK KK RK KK+* 'A *T

*r V- (I T H (C-24C
VK VK K HK) UK AHK KK

U uU"
K K
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where

*

- -E

In the above equations, E indicates the expectation operator. Using the

above equations, the true covariance of the state can be propagated.
This technique was used to estimate the accuracy of the state at reentry
for the case in which a suboptimal filter was used to process GPS mea-

surements,

C-6. COMPUTER PROGRAM ORGANIZATION

A flow diagram indicating the computer programs used in the

system performance evaluation is shown in Figure C-5. The linear error

analysis program (Appendix A) generates the RIMU transition matrices (FP,

F 12, F14, and F22 ) for the boost and reentry portions of the trajectory.

For the GPS case, It also generates transition matrices of the navaid (sat-

ellite) position and velocity error due to G&G. GEM represents several

programs which generate a magnetic tape consisting of the navaid transition

and measurement matrices and the RIMU measurement matrix. For the case of

the BIMU navaid, the navaid transition matrix and the RIMU measurement

matrix are the identity matrix. The system error analysis program (SEAP)

uses the Kalman filter formulation to evaluate performance. The RIMU free-

flight transition matrices are generated internally by SEAP. Effects due

to disturbance noise (Q matrix) for both the RIMU and the navaid are cal-

culated by SEAP. Covariance matrices at the points of interest are output

C-24
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by SEAP in several coordinate systemsi ECI., downrange - crossrange -

altitude. or downrange - crossrange - time. These covariance matrices

describe the system performance.

C-7. SUBOPTIMAL FILTER EQUATIONS

This section presents equations which calculate the true co-
variance of a state as estimated by a suboptimal filter. They may be ap-

plied to the linear discrete case in which the suboptimal filter employs

incorrect transition and measurement matrices, suboptimal gains, and a
reduced order state vector. Analogous equations can be found in Reference

C-1 for the special case of the suboptimal filter employing the full size

(truth model) state vector.

A linear system is assumed for the system model. Thus, state

vector dynamics is given by:

Xk O ¢k-1 Xk-1 + Gk-1 Wk (C-P)

where

Xk-1 state vector at time k-i

¢k-1 " state transition matrix

wk-i - zero mean ratidom disturbance vector at time k-1

Gk-1 disturbance transition matrix

A measurement of the state at time k is given by:

K x Xk + k (C-2k)

,,-ere

zk * measurement vector at time k

Hk measurement matrix

C-26
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Vk " zero mean random measurement noise vector
at time k

l x -Is an n vector; w is an p vector- z Is an m vector; all other

quantities are assumed to be dimensionally compatible. x is assumed tc
be a zero mean variable. In addition, the covariance of Wk.1 is given

by Qk-l' and the covariance of vk is given by Rk:

E(wk wjT) Qk Sjk

E(vk vT) k Rk •jk

E(Nk wj) a 0

Note that wk and vk at time k are each uncorrelated with wi and v, at a

I different time J, and that wk and vk are uncorrelated with each other,

The suboptimal filter assumes the following system model:

+ * * * *(C-2"
"k "k-1 Xkl k G-1 Wk-C

kz Hx (Ck2k)

where x is an I vector. w and v are described statistically by

E(w*k w*) -Q * R 'k j) ,k •jk

E(v Jv) - R* 6J

E(wk vJ) - 0

The filter can therefore assume Incorrect system dynamics. In addition,
the filter does not necessarily account for all elements of the state

vector since x can have a smaller dimension than x.

The relation between x and x is given by

x •Wx (C-29)

ii C-27
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where W is an x x n matrix. If x is formed by deleting bias states
from x, then W takes the form

W 0 (I 0)

In this case the state vector x is partitioned as.

and the filter uses only the states

x (s)

Thus,

S- (5) - (I 10) R-) Wx

The covariance equations can be derived from the above by letting
W"i be defined by

WW" 1  I (C-30)

If x is formed by deleting bias states from x, then W"I has the fonii

W . (C-31)

(Actually, any quantity can replace the 0 in the above equation and still
satisfy Equation C-,30. However, for Equation C-30 to be correct, W is
uniquely given by Equation C-31 for the case of deleting bias states from
the state vector.) Let Xk. be the suboptimal filter's estimate of x at
time k-1. Tho error Xk.i in the filter's estimate of the state vector is
given by

R W". xk (C-32a)•k "wl xk kc3,

The filter estimate of the state is propagated in time by
Xk ýk- N-1 (C-32b)

C-28
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Substituting Equations C-25 and C-27 into Equation C-32a and doing some

algebraic manipulation we get

S* A*� A

1 W" -I WW A* 1
ik - W k-I XkW - I W�k-i " Gk WXk-1

4 W Ck-i Wxk-l " k-i Xk- " Gk-1 Wk-1

The resulting equation is

Sk Wk k-i + '~k-" Xk.I Gk-1 Wk- (C-33)

where

.11

O Wk - 1i O -

"* Ak.1 " ¢Wk-1 " Ok-l

Let us define a new vector X by the relation

x It(~

X is propagated in time by

X k k) *- Adk- I Yk-) G "kl Wk'1) (C-34)
Xk 0 k-/ xk-1 Wk-1

The equation for the mean square value of X is given by

, -P. E(XXT)

T T) XT 'X) (C-35)

C-29
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Substtuting Equation C-34 into Equation C-35, we find thatT-propagates in
time by

W W k-1 k-k-1

+ E Gk-I.k1~ ~ T k~~.~ G k- (C-36) •

Defining the quantities P, U, V by

P - E( T)

U *E(xxJ

V a E(xT

the quantity-Pis seen to be given by

(P vr T)C-37) '
VU

P is the covariance of the filter estimate of x and is the quantity we

are trying to calculate. U is the mean square value of the state vector

x, with no estimate of the state substracted off. If the initial

covariance of x before the first measurement (i.e., before the estimate -•

of x is updated from zero) is given by P0, then the initial conditions

are.

"U0 * P0  (C-38)

V0 "-P 0

V - .S

C-30 '
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Multiplying out the matrices in Equation C-36 and comparing with
Equation C-37, we find that the covariance is propagated in time by

T GT (-Uk " k-1 Uk k- Gk-1 -I G k-i c-39)

k T k 1 T T

Vk Ok-1 ,Vk-1 wk. k-1 Uk- -k " Gk-1 k-1 k-i
T *T

Pk W +k-1 Pk- 1 Wk-1Wk-1

+ * T T U" 60 T
Wki Vk-1 "Ok-1 + AOk-1 Uk- Ak-

+ G- Qk-i GT-I

Note that the propagation of the true covariance P does not explicitly
depend on Q . By contrast, the covariance as calculated by the filter

(computed covariance) is given by

* * * * T G G* T
Pk .k- 1k-i hk-1 + Gk- 1 Qk-1 k-1

The computed covariance is therefore a function of Q

Simil., equations can be derived for a measurement update, Thi

estimate of x after a measurement Is given by

Xk W Xk + Kk Zk- H k Xk

where Kk is the gain used by the filter. The error in the estimate is
given by

+ I*

Rk -W" xk - Xk

+ -1 A*" 1 * A ** "I

Xk Xk + W Kk Lzk- H xk - xk

C-31
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W -1 ^*" -1 * * - .

Rk a Xk Xk - W Kk Hk WW Xk
• • W-

+ W K H Wxk IK H Wxkk k - k k k

+ W K Hk xk + W Kk 'k

kk k kk. wk •k " "k k k "Hk xk ÷Kk jk(-0

where
* *

Hwk & Hk W
Wk

Kw a W Kk
kk

k HWk - Hk

Augmenting the state vector as before

Xk • Xk4 (,k)
and taking the mean square value of X•, we can use Equations C-26, C-28,
C-37, and C-40 to obtain

u -U (C-41)

k kk

V HV) (I Kw H U aH )
k (I k wk k k Kwk
p+ (I Hk k *"kT"k " w k HWk Pk (I - Kw k k

0 *I- H ) V'T AH K *T
Kk wk k k Wk

- Hk V" I Kw Hw )"Kwk k k k k

C-32

"-~--..~J,'"~. . . . . . .. . . . . . . . . . . . . . .



LOGICON____________________

T T
+ Kw 4H U T

kk k k K

Note that the measurement update of P does not explicitly depend upon R.

However* Equation C-41 does Implicitly involve R *and Q* if the gain K* is
chosen to be a function of these quantities. Note that if x* a x (i.e.,
W a 1) and the correct dynamics are implemented (&H a 0), then
Equations C-39 and C-41 reauce to the standard form for the optimal Kalman
filter.

If the filter state x, is formed by deleting states from the full
state vector x, then the covariance P can be expressed In terms of the re-
tained stites s and the deleted states b:

Pm E T X S) E {( )(s) ]*1

P1~~E bp(:g*s - s) l E[~2 bb~ bI

Defining P,2. by

P2 aE[ b(R*. s)J

P3.a F[bhjT

C-33
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the covariance P is seen to be given by

(P1

PmP

Equations C-39 and C-41 provide the full covariance matrix P and

are equivalent to propagating a 2n x 2n matrix. For large n this can re-

quire excessive computer time and memory. Often one is interested only in

the quantity Pi. In this case, it is possible to formulate equations which

require propagation of an (n + z) x (n + z.) matrix where z is the order of

x . This can result in significant savings if most states in the state
vector are to be deleted.

Define the following:

Gwk -WGkW'

Rk " Rk " Wxk
a -

a~k k - W~k

AHk a HkW - Hk " ,k

i I , T

P - E(R 9
ST

V - E(x

U -E(xx T)-U

P 
VT

V U

,, 't C-34..
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The covariance of the retained states can be derived as before. Since
the method has already been pre3ented, only the results are given here.

The initial condition, before an estimate of the state is per-

formed, is given by
U T

v 0  .~ 0 w

, , WT
P0  WUow

0 0

The covariance is propagated in time by

31 * k. 1 T T-

Uk 0 k'l Uý-l k•' + 'k'! Qk-1 k-I (C-42)

' ' *T ' T T
Vk ' Ok-1 Vk-1 Ok-1 + Ok-1 Uk- . -I 4k-1 Qk-1 k-I

T* V k' *T
P k-l k-i k-1 + 44k-1 k-1

• 'T 'T 'TVk- 1 A 4 AI k 1 + 4_ k'

T

k-1 k-1ik-

The measurement update is given by

Uk U

, - . T ,T .T
V k Vk (I Kk Hk) . Uk 4Hk Kk

Ik " (I . Kk Hk) Pk (I - 'k Hk)

* .- ,T ,T .T
-(I- Kk Hk) Vk AHk Kk

- Kk AHk Vk (I Kk Hk)

C-35
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.* , T .T

+Kk kH A kUk 0Hk Kk

*T
+ Kk Rk Kk

In summary, the following equations can be used to propagate the

full suboptimal filter covariance:

Initialize with

U0  P0

V0 u- 0

Go 0 P "0

(The initialization assumes no prior estimate of the state.)

Propagate in time by

k" k-1 uk-1 k. I ak-1 Qk-1 k-.1
T TT

Uk Wk.I 1 vk-1 OWk. + Ok-l Vk-I G wk I
V k 0 k-1 k -1 Ow k- U o k-1 v k-1 w k-1S i -

Wkl1 k-1 A~k-i k-1  k-1 40k.1

k- Gk 1 Qk- k-I

Update after a measurement by

+ * * T U- T T
k k V w k WNk k kKwk

C-36
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+ (I-K Hk) P (I-~ H*k)T

* (I-K Wk k V k k

. -* * T
(''w Mk )Vk kKw J

k k Wk

k kkk k
* T

+ Kw R Kw
kk k

SSimilar equations can be used to propagate the covariance of

the states retained by the filter.

I

* I

C-37
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APPENDIX D

LINEAR REGULATOR GUIDANCE

In this appendix the results of the analysis of the application of Linear

Regulator theory to the problem of steering an aerodynamically controlled

maneuvering re-entry vehicle are described.

In Section D-1 a steering law and a methodology for the selection of the

associated weighting matrices are derived using time as the system

variable of evolution.

In Section 0-2 the use of a state variable as the variable of evolution

is investigated. A steering law formulation for this case is derived

and simulation results presented.

In Section D-3 the use of transformations depending on the instantaneous

vehicle state to define the evolutionary vartible are considered and the

mathematical theory of Appendix D-2 modified to incorporate this case.

D-1

S .. . .. :: : ..... • - . -• .• ",• " . . ".: :;•i' "T • •'':'': ... :: '•:; " r" ': .. . .. '•": '" i •.. ...' .. " " • •-•* . . .-•



WOGHON

D-1. CONTROLLERS IN THE TIME DOMAIN

In this section controllers operating in the time domain are considered.

A controller based on the Linear Quadratic Regulator is derived and the

stability and controllability properties are examined. The analysis of

these properties leads to a methodology based on these properties for

the selection of the weighting matrices associated with the regulator

formulation.

D-1.1 Time Domain System Description

For the present studies the vehicle Is assumed to be a bank-to-turn

vehicle which orients the acceleration vector by changing the vehicle

bank angle. The target centered coordinate system and the trajectory
and vehicle orientation angles are as shown in Figure D-1.

D-1.1.1 Trajectory Equations

The nonlinear dynamic equations of motion for the vehiclo are:

x V Cos Y Cos T

SV cos Y sin T

z Vsin Y
• A cos.c 9 Co*+

V (D-1)
A sin
V cos y

D+ siny
m

A -a A + a Ac

. -b P+ b

D-2
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Figure D-1. Definition of Coordinate Systems
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where Ac is the conmnanded acceleration and.A Is the actual acceleration,

and where ' is the actual bank angle and (c is the commanded blank angle.

a and b are the autopilot corner frequencies.

The assumptions in (D-1) are constant gravity (g) and flat, nonrotating

earth, The drag force 0 is a function of angle of attack, Mach number,

and altitude.

0-1.1.2 Approximate Trajectory Model

In previous studies it has been found that the velocity, V, behaves in

such a manner that the difference between it and the nominal velocity

can be ignored. So In the approximate model the ( equation will not be
used, and whenever V is needed in the other equations, it will be replac-

ed by the nominal velocity, VN. This approximation follows since V Is a

slowly varying monotonically decreasing variable, ano the PGRV has no
direct control over velocity magnitude (i.e., no thrust or braking).

Also it is assumed that the gravity force Is negligible in comparison to
the lateral acceleration force for the PGRV maneuvers. These approxima-
tions reduce Equations (D-1) to the following equation set:

SVN cos Y cos V

• VN cos Y sin Y

z VN sin Y

' A cos VI

N (D-2)

A sin 0S"VN cos y

A -aA + aAc

D-4
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For convenience, let us denote (D-2) by

0 .f

(0-3)

where C is a vector of seven components given in (D-2) and u(t) is the

vector actuating signal given by

u(t) - c(t) (0-4)

The vector function f can be identified from (0-2).

Corresponding to a nominal value for u, say un, there is a solution to

(0-3) which gives the associated nominal trajectory. Denote by

(xn, un) the nominal vehicle trajectory and control, with xn(t)i
to S t s tf the solution to (0-3) corresponding to the open-loop control

Un(t); to S t 5 tf. We will suppose that un satisfies all the constraints
placed upon the input and that xn satisfies both the path and terminal

constraints placed upon the vehicle trajectory.

The actual trajectory of the vehicle will deviate from the nominal for an

assortment of reasons. The controller output may be up instead of u

the trajectory may begin at a point not equal to ý 0, the differential

equation of dascribing the vehicle motion may differ from (0-3) in some

way; etc. Denote the actual vehicle motion by xp and the actual control

signal by up. The deviation in trajectory and control is given by the

pair (x, u) where

x ~x -xnu p -n (D-5)

uU u -un

D-5
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Sinr. x and Ll represent deviations from the ideal trajectories given
by (x , Un), it is natural to try to make them as small as possible. Un-

'1 n n
fortunately, (x,u) is a vector time function and pointwise minimization

is impossible. Furthermore, since (x,u) represent all of the vehicle ,

characteristics unmodeled by (D-3), the dynamics of the perturbation

variables are difficult to quantify.

Certain assumptions and approximations make the problem simpler to solve.

It will h'e assumed that (D-3) represents the vehicle dynamics and there

is an error in the starting point of the trajectory; i.e., the initial,.

condition on xp differs from xn.

p noxp(t) x n(to)i

Further (x,u) till be assumed to be small enough that the dynamical equa- I
tions of the perturbation variables are given to an adequate degree of

closeness by

x a Fx + Gu to 0- tf

(D-6) I,.

x(t°) X (t°) X (t°) (0-6

where

F U 3 f 
f1t

S1 L1
(D-7)

n un) (n in)

D-6
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For the system described in (D-2) F and G are given by *

F G (D-8)

- 22 a ol

where

-V siny Cos*J _V cosy sin* 0 0
F1 2  - siny sin, V cosy cos* 0 1 (0-9)

V cosy 0 0

0 0 -V lcoso V'A sin;

F22 . A siOsn y jl sino A coO ~(-o
2V csY V cosy V cosy (D-10)

0 0 -a 0

0 0 0 -b

All of the control and trajectory variables are evaluated on the nominal

trajectory. The matrix F is time variable an the trajectories of

interest, but the accelerations are such that the variation is "slow".

D-1.2 Time Domain Controller Definition

There are several properties which the controller should possess. First,

it should be a full state feedback policy. Further the control algorithm

must have a s",mple structure. Linear cuntrol rules provide a large class

of easy to inechaiiize controllers and attention will be restricted to this

class. The closed-loop system must be asymptotically stable about the

nominal trajectory and must follow the nominal with small errors. In

*To simplify notation the dimensions of null and identity matrices will

not be given if obvious from the context.

U-7
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addition it is desirable that the controller be robust in the sense that

if the dynamic equation of perturbation variables differs from that

given in (D-6), the closed-loop system response will still be satisfac-

tory.

To produce a suitable contoller, an index of controller performance will

be introduced. Since xp should track xn as closely as possible, x should
be minimIzed. To measure the closeness in tracking at time t a quadratic

weighting will be used; x(t)'q(t)x(t); where Q is positive semidefinite

symmetric (QtO). To minimize the deviation in control from that re-

quired on the nominal trajectory a quadratic measure will also be used;

u(t)'R(t)u(t) with R > 0 (the specific value of R is given in Reference

D-1). Finally terminal miss will also be weighted in the performance

index with a quadratic term; x(tf)'Pfx(tf) with Pf ? 0. The full per-

formance index is the generalized sum of the weightings at all of the

time points along the trajectory;

SX(t)'Pfx(t) +f tf[x'(t)Q(t)x(t) + u'(t)R(t)u(t)]dt (D-11)

to

It is well known from linear regulator theory that the control policy
which is best with respect to the indicated measure of performance is

given by

u - -R'IG'Px (D-12)

with

P -F'P - PF + PGRR'G'P - Q

P(tf) - (0-1)

The control policy given by (U-11) has many of the properties considered

to be desirable in this application. It is linear with time variable

gains. Furthermore, the system is stable if the model (D-6) satisfies

D-8
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certain technical conditions which will be considered in detail in later

sections of this appendix.

Furthermore, (D-12) is robust control, Suppose that the true representa-

tion for x should satisfy an equation of the form

PX + du + w
X(to) X (t - Xn(tO)

where w is a high frequency random disturbance and tho coefficient mat-

rices (7,G) differ slightly from (F,G) given by (0-7). The random forc-

ing term w could represent the influence of turbulence, atmospheric in-

homogenetles, unmodeled high frequency vehicle dynamics, etc. The

elements In the coefficient matrix may change because of changes in the

lift and drag coefficients, etc. It is well known that even in the pre-

sence of unmodeled high frequency disturbances, the linear feedback

control given by (0-12) performs the path following and stabilization

functions in the best possible way. In addition, this controller gives

the closed loop system the property of having a uniformly smaller sensitiv-

ity to parameter variations than that exhibited by the open-loop system.

The control policy given by (D-12) has many favorable attributes in the

application under study. The general form given by (0-12) and (D-13)

is broad enough to include all of the controllers which might reasonably

in design is the selection of the appropriate weighting matrices in the

performance index. This choice must be made judiciously in order to

simultaneously provide adequate path following performance and a ter-

minal miss within specified bounds.

'DI

VI
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0-1,3 Selection of Weighting Matrices.,

Although the controller given by (0-11) has all of the previously listed

attributes for any permissible choice of (P,Q,R), system performance may

still be unsatisfactory. For example, although the closed-loop system is

asymptotically stable, it may be inadequately damped. Effecting changes

in the closed-loop damping is accomplished by modifying the weighting

matrices of (0-11), but unfortunately It is not immediately evident how

(P,Q,R) should be changed.

For some purposes it is more convenient to study vehicle motion in a

rotated coordinate system. Let T be the coordinate transformation

given by

wher-

cosy Cosi cosy sin*p

\-siny cosJ -siny sin cosy)

It can easily be shown that if we let z represent the perturbed state in

the rotated coordinate system; i.e.,

z a Tx (D-16)

then (see Reference 0-3, (A-3) and Reference 0-3)

i z + Gu (u-l)

U-10
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where

0 ~ cs 0 0 0 0
4coy 0 Wsny 0 V COSy 0 0
.t• -iny a V 0 0 0
o0 0 0 0 -V'cot* -VA sONs,
a 0 0 Asn ny 0 Lo.ll.

V cosy V OSy V cosy

0 a a 0 0 -41 0
0 0 0 0 0 0 .I..00 0000-

This change in state variable representation resolves the vehicle motion

into a component along the velocity vector*z1 , an orthogonal component

in the plane of the motion z, and third component perpendicular to the

plane of vehicle motion z2.

The uncontrolled system given by (D-17) has anomalous stability proper-

ties. To illustrate these, consider the case in which the coefficients

in (Fz, G) are slowly varying, i.e.,

y, •', * are small

A, V are constant.

The stability of the open-loop system is partially characterized by the

open-loop poles which are in turn given by the eigenvalues of Fz. Direct

calculation (see Reference 0-2, (23)) shows that these eigenvalues 0 }

are located at points given by

(X 1 a 0o, 0, ja -b

If Z is a vector, z, is its ith component. The vector is a unit

vector in the ith direction.

D-11
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Only those poles attributable to the autopilot are in the left half plane.

The poles of the vehicle are all on the imaginary axis and indeed there
are five poles very near the origin. While a system with poles given by

(0-18) could, under very unusual conditions be stable, it could never be

asymptotically stable. Only through feedback can the system be made

asymptotically stable.

Because of the lack of open-loop damping, the existence of a feedback

controller which will stabilize the closed-loon system depends upon the
satisfaction of a technical condition on IFzG3 . The condition is
called controllability. A controllable system is one in which any

initial error can be eliminated with a linear feedback control law in
an arbitrarily short time*. The property of a controlldble system of
relevance here is that if ýFz.,G is controllable then the closed-loop

system given by (0-6) and C- i2) is asymptotically stable.

Under the assumption that the coefficient matrices are sufficiently

smooth, an algebraic condition for controllability can be deduced.

Define the matrix sequence lM (t)( by

Me0 (t) a G(t) (0-19)

Mk+l(t) •- F(t)Mk(t) + Mk(t); k • 0,1,...

Then let

Cj(t) = [M,0 M 1,...,M J.] (D-20)

This 5 actuallyEa strong form of controllability, but this defini.tion

will suffice for the system under study here.

D-12
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The system described by (D-6) is instantaiyeously controllable if rank

Cn(t)un.

The matrix C (t) given by (0-20) bears striking resemblance to then
controllability matrix Cn for a time invariant systam. Indeed it is

easy to see that

rank Ci(t) - rank [G, F &G,...,Fzn-1G]

if [Fz,G] Is a constant matrix.

In Reference 0-2 both Cn and Cn were studied and it was shown that

rank •n"6 (D-2 1s)

rank Cn(t) • 7 (D-21b)

The implication of (D-21) is important in this application, Equation

(D-21b) is sufficient to guarantee that closed-loop system guidance law
displayed in (D-12) is asymptotically stable for appropriately restricted

weightings in (D-11). Equation (D-21a) indicates that the degree of sta-

bility may be inadequate. To see why this is so, a careful study of the

implications of uncontrollability is required. The state space of linear

system may always be decomposed into a set of states or modes that are con-

trollable and a residual set which are uncontrollable. These former

modes are always stabilizable by linear feedback while the latter are

unaffected by linear feedback. If the uncontrolled modes are not

asymptotically stable the closed-loop system will not be asymptotically

stable either.

The system in question is controllable but for any fixed time say t* the

matrices [Fz(t*), G(t*)I do not satisfy the conditions for time invari-

ant controllability. The system could be described as being locally

D-13
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uncontrollable mode which rotates with time. Detailed analysis shows

that the locally uncontrollable direction in state space rotates among

the elgenvectors of F (t) which have zero damping. The system is then

said to be locally nonstabilizable in the sense that for every fixed t,

the constant matrix [FzG] is not stabilizable. If [Fz,G1 were a

rapidly varying function of time, no adverse effect would be expected

from these local properties. Unfortunately, the nominal trajectory

considered for this vehicle results in very slowly varying dynamic

matrices in (0-6),. It is to be expected, therefore, that the closed-

loop system will exhibit peculiarities normally associated with un-

controllable systems.

The above qualitative discussion can be made more precise by reference

to CW(t). Denote by the set of vectors in R7 orthogonal to both

columns of M i .e.

ltj(t) * : Z CA, zR 7, Z'M J(t) a EQ,03

and let 9?J(t) be its complement. Define the positive definite matrix

W(tl,t 2 ) by

Wl(t 1 ti) f t2 OZ( I G RI r G' I • :1'

tI

where o Is the transition matrix of Fz. It can be shown (Reference D-3)

that if z(ti) is an eigenvector of W(t1 ,ti +A) and if
i-i

z(tl) C U '71R rTi I then for snoall a,z(tl) can be transferred to the
R-O -(1+21)

origin with control energy proportional to A . The implication

of this result is important. For example, if z(t ) is a linear combl-
0

natioh of columns of G, the error can be eliminated by direct action of
u and the energy is proportional to a-I. Moreover, if z. and zB are

orthogonal etgenvectors of W(t0 ,t 0+A) and If zý'MJ(t)- [W1 ,03 ,

0-14
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z6M (t 0 ) - [O~w2 J , then the energy required to transfer z to the

origin is,for smallAk-•) times that required to cause a similar

transfer of z to the origin. The direction z is said to be more

controllable than z~ by the factor ni. Clearly if z(t) a Vj(t) for

all (J,t), it can not be transferred to the origin at all.

Applying these considerations to the system described by (0-17)
some rather interesting system properties can be deduced. Assuming that
the system coefficient matrices are slowly varying, that ý<<i, that
a-b and that mnom $1 1800 it is shown in Reference 0-3 that to first order

Cl. (;1 i 7 )Y¶l 0 and '6 and '7 are equally controllable

C2. ( 5 1, i 4 )c *111 %and 15 is more controllable than

Z4 by the factor A(cosy )'

C3. (• 3  2) 12 Y n ¶ n 1 and z2 is more controllable

than z by the factor A

C4. 2i€ 3 U 1, u4• 1 and the energy required to

eliminate errors in is proportional to -2

Relations Cl through C4 provide measures of the relative controllability
of pairs of modes of the system. They are based upon u(t)'u(t) as the
power measure. The components of u are actually related to different
physical quantities and a better weighting for power would probably be
u'Ru. Such a power weighting measures not only the magnitude of the
components of the actuating signal but also minimizes them with respect

U-15
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to their permissiable size.

Since R>0, (0-6) can be written in the form

x Fx + R"' (R~u) (0-22)

As (0-22) makes clear, the controllability indices given in C1-C4 can

be modified to provide controllability with respect to u'Ru if GRO is

used In (0-19) instead of G. This is easily done when R is given by

R =diag IA•Amx'A-mx)(0-126)

(Amax A /O a

where AAmax and 40max are the maximum permissible magnitude variations

in the actuating sinnals.

It can be shown that C1-C4 become

C'1. and 7 are equally controllable

C2". is more controllable than z4 by the factor

max

AA ax cosy

C3' 2 is more controllable than z by the factor

AAO max " -

AAMax

C4'. The energy required to eliminate errors in is

proportional to ý -2

D-16
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With the relation given in Cl' -C4' we are in a position to make a

judicious choice of the state weighting matrices P and Q. Since the

conditions are stated in the z-coordinate system, the weighting matrices

P2 and Q corresponding to this coordinate system will be found first.
Z z

The states z6 and z7 are autopilot states and there are no penalties

associated with their variation, Consequently a reasonable choice for

their weighting would be

S)66 (Qz),77 0 (D-24)

The states z4 and z are flight path and azimuth errors, respectively.

Suppose these errors are required to stay within nominal bounds given

* by q,,; i.a.,

ma X ( 2 4 2) (0-25)t ) q2
The usual rule-of-thumb for selecting ~z)44 and (Q)Swould be

(QZ)44 * (Qz)55 o q22

Suppose XI >1. Then z5 is easier to control than z4 by the factor

For equal initial errors, the residual error in z4 at times greater than

to will tend to dominate that in z5 because of the difficulty in applying

effort to z4. To cause the closed-loop damping in these two modes to be

more nearly the same, a heavier weight should be assigned to z4. The

weighting of z4 will be increased by the factor X, while maintaining the

same overall angular deviation; i.e.,

D-17
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2 2 2 q22 2

445(Qz) 55

This yields (D-26)

2)12

(Q)4 X12 z2. Q)5 2 q22
+ +

It is readily apparent that (D-26) provides suitable weightlngs when

s 1 as well.

The important trajectory variables are z and z3 which measure errors

orthogonal to the nominal trajectory. Reasoning as we did in the
previous paragraph if

max (42+ Z2) S 2.~ (D-27)
t q o-y

then
2 X 2 2 2 2 2

(QZ)22- q12 (Qz)33 • - q12 (0-28)
222 1 2

The final state variable measures motion along the nominal velocity vector

vector. As C4' indicates errors in this direction are quite difficult to
control. Errors in z1 require energy proportional to ' -2 to correct

and i is fairly small in this problem. It is easy 6o see the physical
cause of the difficulty in controlling z,. Neither normal acceleration
nor bank angle coiviands create any first order change in tangential

velocity. If the flight path, angle were constant ( 0 * 0) errors along

the velocity vector could not be eliminrated (the system is not stabiliz-

able). Since Y • 0 we have some control over zI. This is accomplished

by shortening or lengthening the turning radius of the vehicle. To

D- 18
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accomplish regulation of path length, sizable amounts of control force

are required to produce small variations in z1. Because of this very

weak coupling between u and zI, if zi has a weighting in Q., u will have

a tendency to give excessive attention to this error.

If the absolute time of evolution along the trajectory Is of little

concern, the system can be made insensitive to tangential errors by

making (Qz)ii - 0. In this specific application this is a reasonable

choice since terminal impact performance is of primary concern.
I

The final form of Q is then:

22 X2 2 2 2

. 2 . -

where xil are given in C2' and C4' aud qi2  are given in (0-25)

and (0-28)

For the reasons outlined above, the only terminal errors are those

associated with errors perpendicular to the flight path. If

2 + 2 ()S2 (-0z2(tf) ÷ z3 (t3 • 3) (2-30)

a reasonable choice of Pf would be

2 X2 2

2
z,f dag 0 -0-3,),,0,0

D-19
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Equations (D-23), (D-29) , and (D-31) give the weighting matrices in the

z-coordinate system. The actual observations and calculations take place
in the x-coordinate system. It is shown in Reference 0-2 that an
optimization problem in the z-coordinate system with respect to the

weighting (PzQz,Rz) is equivalent to the optimization problem in the

x-coordinate system parameterized by (T'PzTT'Q TRz) Using the value

of T given in (0-15), it follows that

Pf VT'PzfT

0 (Pf) 2 2 )

where (Pf)i"
2 q3

3  ( 22sin2 ý + sin2y Cos s.e

=7 +2

2 q 3  x2 c s i n + s i n 2 y s i * o 2 q 3 
2  C 0 3 2 s in 2 y s i nI

2 2 22 (33 y c3) 2 q3
2  2 2

sncoycssiny cosy sin*J Cos

(Pf) 22 * 0 (D-34)

Simi I arl y,

Q T'QzT

(D-35)
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where 2
q2

Q11 = - (Pf) 1 1  
(D-36)

q3

2. /
1 ' 2 q22 O

Equations (D-23), (0-33), (0-34), (0-36), and (D-37) give the final

system weighting matrices for this design problem.

0-1.4 An Example

The previous section provides a procedure for selecting the weighting
matrices to be used in the synthesis of a vehicle guidance law, To

illustrate the utility of these weighting matrices a simple example is

useful. In this example two controllers will be compared. The first u1

will use a modification of the techniques presented above while the sec-

ond will use weighting matrices which might have been chosed after

viewing the open-loop simulation.

To isolate the influence of the coordinate transformations, (P, Q, R)

have been kept as close as possible for the two controllers Denote

the weighting matrices associated with control I by (PitQi Ri)"

Then

R1 a R2 - diag(rl,r 2 ) (0-38)

The scalar r1 measures the perturbed acceleration along the nominal tra-

jectory. Its calculation is detailed in Reference D-5. Suffice it to
say that

-5rl(to) L, (10) ; r 1 (tf) q (10)"7 (D-39)

1D-21
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with a smooth monotonic variation in between. The perturbation in bank

angle was restricted to about 100 and

r2(t) (.!) 25 (D-40)

Equations (0-3) and (0-49) give R for this problem.

The nominal trajectory used

0(t) - 0 - A(t)3 1600, 25°Y' 65 (D-41)

From (0-142) - (0-144) we see that
&A!

X AInax 3 (0-42)

2 1.6 X 10 (.2)

x 1.6 x 10a(.2). CC,, 2.5] (D-43)

A ~'naxc'

Because it is believed that the method of computing AAmax gives rise to

excessively large values, it has been decided to approximate X. and X1 by

N2- 1 (D-44)

The choice of q, is based upon an allowable position deviation

from the nominal of 6 x 10 at t0 and 10' at tf.

q" 6000 - 5990 0  (0-45)

The weighting on 4 and x5 is deduced from permitting 10 of angular

deviation in flight, i.e.,

q2 57.3

I - ... ..
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Substituting (0-41), (D-44), (0-45), and (0-46) into (D-36)

q1
2sin2 y 0 -q 1

2 siny cosy

0 q12 00

*Q "ql 2 siny cosy 0 q1
2 Cos 2 y (0-47)

q 2

2
0 q3

2

0

L 0

Although there is no importance attached to terminal deviations in x4 and

x5, for reasons of computational simplicity P1 was chosen as

P1  Q1 (tf) (0-48)

Equations (0-38), (D-47), and (D-4L give (P1, Q1 1 R1 ).

The second controller u2 is parameterized by the weighting matrices

(P2 ' Q2' R2 ). The matrices (P 2 ' Q) differ from (Pi, Q1) only in that
they are not rotated to conform to the z-coordinate system and no penalty
is accorded to deviations in the altitude coordinate z. As was observed

In Reference 0-3, for the trajectory of interest, no penalty on devia-

tions in the altitude yields a zero gain for altitude perturbations.

To compare system perfornance with the two guidance laws, the results

of a simple example are Instructive. For the guidance law uI, the

weightings (Pi, Qi, Ri) are given in (D-38), (D-47), and (0-48)).

For guidance law u2

0-23
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0 0

0 q2 0
2 0 0 0 (0-49)

ij q2

0 q

0

0

P2 " Q2(tf) R R,

A simple trajectory contained in the (x,, x3 ) plane was examined-

Xi (to) u 6 X 103  X(to) • order 10

Xi(to) 0 " I #Z(t) I order 105

to a 0 , tf a 8

Some important qualitative features of the system response are shown
in Figure 0-2. The trajectory associated with control u, is denoted by

xpi. This figure is not drawn to scale in order that effects attrib-

utable to the difference in controllers can be made more apparent.

All of the trajecto~ries begin at the same point but xp2 crosses xn and
terminates below it. The trajectories have the properties which would

be expected from their respective performance indices. The guidance
law uI reduces the magnitude of the error and rota,'-s its direction so
that It is aligned with the velocity vector. The guidance law u2 on the

other hand rotates the error essentially -Into elevation.

The character of xp2 has one anomaly deserving comment. The matrices

(P2' 1 attach no penalty to shifts in elevation and so it is to be

U-24
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expected that Xp2 would take the form of a motion "parallel" to xn;

i.e., a motion having the same direction but vertically shifted. On

this basis another trajectory denoted by Xp appears to be a more

likely candidate for'the trajectory because it is "parallel" and

presumably takes less energy to accomplish. The flaw in this line of

reasoning is that more than "parallel" motion is required If the penalty

accorded by (P2, Q2 ) is to approach zero. "Parallel" motions with time

translation give rise to positive penalities because of a perceived

error in x. Observe that u2 must "slow" the system before moving into
a"parallel" path. This slowing is accomplished by having xp2 cross xn,

and producing an increase in path length thereby. For reasons discussed

earlier, this leads to a considerable increase in the energy required

from the guidance law. To "slow" the vehicle, the weakly controllable

mode must be excited and this necessitates an increase in the size of

the actuating signal. For the specific sample trajectory xp 2 requires

roughly twice the energy required by xpl,

Table 0-1 gives relative performance of u, and u2 at impact for various

initial errors and parameter variations. In every case ul provided

superior performance. Though it is probably true that u2 is inferior

to other controllers that could have been selected empirically, this

example illustrates that the system designer ignores the relative

stability of the system modes at his great risk. Only by explicitly
modifying the performance penalties can the available guidance energy

be allocated in the most appropriate way.

0-1.5 Summear

In tnis section a methodology for synthesizing a guidance law, based

on the Linear Quadratic Regulator theory, and the associated weighting

matrices has been developed. In this formulation the relative con-

trollability of the different system modes enters directly into the

system penalty function. The point of view espoused here differs from

D-26
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Table D-1. Guidance Law Comparison *

[,I

Impact Deviations

Guidance AX AY at A Mach
Perturbations Law (ft) (deg) (sec) -

Initial u2  652. 3.8 .11 .21

downrange U1  -10. 0.9 .09 .16

error

Initial U2  -2773. -6.9 -. 36 .09

altitude u1  -151. -2.9 -. 33 .19

error

Density u2  377. -2.0 .06 -. 50

perturbation u1  -3. 0.1 .05 -. 50

* Comparison by analysis of the linear response

D-27
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that typically used in that P and Q are usually constrained to be diagon-

aT and equal weightings are assigned to states that are intended to have

equal deviations. It is the fundamental point of this discussion that

equal penalties do not cause "equal" responses. Indeed, just the oppo-

site is true. Equal weighting on states will tend to preserve relative

responses in closed-loop that the states had in open-loop. Weightings
modified by the relative controllability properties of the states will

tend to counteract this. Though the problem is conceptually simpler than

that studied by Skelton, Reference D-4, this procedure is similar in
effect to that of Skelton in that the difficult-to-control directions

are identified and greater emphasis is placed upon them. The closed-

loop controller is expected to display more uniformity in its response

to initial errors in different directions than would one not employing

the controllability factors.

In addition, the analysis of the controllability illustrates the diffi-

culties associated with any guidance law for this system, and for systems

with similar characteristics, which is based upon the use of time as the

system variable of evolution.

D-28
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D-2. STATE VARIABLE AS VARIABLE OF EVOLUTION

In this section the use of a state variable rather than time as the
variable of evolution of the system is considered. The motivation for
this approach is manifold. Historically it was observed that a reduc-

tion in the number of states carried In the solution of the matrix
Riccati equation reduces significantly the time requirements for target-

ing the optimal control guidance law. Another concern in the case of
a maneuvering reentry vehicle is the uncertainty in the time to begin the

process. Clearly, the use of a state variable for the independent
variable provides benefits in the above areas. Previous studies, prim-

arily motivated by the above considerations, found that performance was

improved through the use of a state variable rather than time. The
reason for the improvement is that when time is used for the variable

of evolution the controller not only tries to control the state variables

to follow a space curve but also tries to control the rate at which the
space curve is traversed. Such control applies some of the resources to
the control of the least important part of the problem, in this case the
time, rather than concentrating on the most important part of the prob-
lem, the steering of the vehicle along the desired space curve. For

example, suppose
x (t where satisfies
p

Xn(tl) " ; t, > to

i.e. because of clock errors in the vehicle, the control process begins

on the desired trajectory but with a time error of (ti-t0 ) seconds. The

LQ controller using 0-6 and 0-12, however, perceives this time error as
a state error and tries to remove it. It thus overcontrols the vehicle
trying to eliminate errors that are of no importance. Similar behavior

occurs if the aerodynamic drag is greater than the nominal.

0-29



0-2.1 System Equations

The basic problem of order reduction by change of independent variable

can be posed in the following way. Let the system dynamics be described

by the nonlinear differential equation (0-3) with the perturbation var-

iables defined as in (D-5).

Suppose that x and x are both such that their first component is mono-

tone increasing; i.e.,

xp1 (ti) < XpI~t2)

xn1(tI) < xn 1 (t 2 ) for 1: > tj

Since xn and xp are continuously differentiable, either one could be used
in place of time as an independent variable.

Consider first Xn1* From Equation 0-3

d xn f(xn' Un) fr (Xrn)-0)

The linear variational model is obtained from (0-5O) by perturbing xn

and un slightly and equating first order terms. Note that only the num-

erator of fr is perturbed and not the denominator. Because this does not

yield the gradient of fr' the associated variational equation is non-

degenerate; i.e., even though

f rl "1 (D-50)
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it is still true that

d x
d x 2  0 0

Carrying out the usual variational arguments on (0-50), a linear evolu-

tional equation for x as a function of xnl can be obtained and the stan-

dard control problems solved. Note, however, this design problem takes
place in n-space if n is the dimension of xp.

By contrast if xp1 is used as an independent variable, the problem
becomes conceptually more complicated. There is an ensemble of functions

( x ) , the elements of which are parametrically dependent upon the per-

turbations from nominal of the system dynamics. If the specific x

realized by the vehicle were known a priori, this would create no es-

sential difficulty. Unfortunately, this knowledge would violate system
causality and may be ruled out immediately. Furthermore, the one

rationale for using xp1 as an independent variable is to eliminate the

explicit time dependence of the perturbed trajectory and the control.
With no measure of absolute time, there is no way to calculate xn from

x and consequently no way to compute x.

One way to avoid the problem of loss of time information is to generate

a pseudo time variable. Suppose at time t1, xpl(t,) is observed. From

this information alone tI can not be computed because x1 (t 1 ) and hence

xn1 (tI) are not known. It is possible, however, to estimate t, by t 1*

where t* satisfies

i X~~~n1 t1*"XPt)

That is, the first state variable is posited to be observed without

error, and the nominal values of the other variables inferred from this

D-31
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observation.

I f It t~ issml

xf(t*)*Kit)+( 1 - ti) ft(xn(t~i) un(ti)) (-3

From (D-5), (0-52), and (D-53)

or (0-54)

The time shift inherent in making the identification shown in (D-54) is
proportional to the unacknowledged error in the first component in the
state vector. Thus, trajectory errors become time errors under (D-54).
The time anomaly influences the perceived vehicle dynamics. The vehicle
controller usTng x as an independen~t variable observes errors in a new
coordinate frame x r where

xr (t i) x K(t) x x(ti (0-55)

Obviously

x ~0

0-32
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as the controller can not identify first component errors. If only first

order terms are retained, it follows that

Xr(ti) - x1(t1 ) - (xn(tl) + (tl*-tl)f(xnun))

Sp(t 1 ) X01(t) - f(xnUn) (D-56)

•x(t ) 1f x! ,

fl 
+

Equation (D-56) shows the aliasing of time errors into state errors in x

Errors in the first state component of the system are unmeasurable, but

they are reflected in the perceived errors in the other components at

the state vector.

D-2.2 Vehicle Dynamics in the Perceived Reference Frame

The vector xr in (0-56) is the perceived error state of the system. To

provide adequate regulation of this error, its equation of evolution must
be derived. From (0-3) it follows that

d(x (t)) - (f(Xn ,un) + fx x +-i-• u)dt
p n ax a

(0-57)
•f1  @f1

d(px (t)) =(f l- x + ý- u)dt

Consequently

dxn~) dxt) . (f+ D~_. f I)
f + xx+ S- U) .

d"Xpn(t) + 'xpt) ax au
d x (l d xf+LI.x+ I - 3

pT p1 ( - 1 S~UL

D-33
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where terms of order x2 and u2 and Au have been neglected. So

dx(t) 1 ( f af 1 f ffdxpi~t) T•" • -1 ) x + (7 Tu -Z • -1i•uf

(D-58)

+ f dxn
r dx-.

Denote

afr afr
" r au Gr

From their definition it follows that

1 af f af1

Gr T "I Tx" f 2 a1

and thus

dx(t) dx np FrX + GrU + fr - d (D-59)

The last term in (D-5g) can be simplified;

dxn f(xn'Un) f 0 f, u)

n n f .1D-
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and

dx F x +•G u f (D-60)
dx r r ~ax a -u)

dpl,

Now consider the change of variable indicated in (D-56)

dxr dx - d (xif (D-61)

3x P1 - ax p I

The first term of (0-61) is given in (0-60), The second term can be

found by observing

dt fr f Fr dx Gr dun (D-62)

at- r F rn 3-
F r f G rý

dP x (D-63)

where only zero'th order terms in the expansions have been retained in

(D-62) and (0-63). Thus

I dxI xI

•--Rf-p fr d r 1 +- 1 (Frf +Grun) (D-64)

Substituting (0-64) and D-60) into (0-61)

dXr F ) fr af I !f, dx2

dx ~ r 1ir r 1nx 5 u -~d~

(0-65)
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From its defining equation it is apparent that the first row of Fr and

the first row of Gr are zero. From (0-60)

d x 1 1 fl x fl U
dx -7 a- au

Substituting this into (0-65)

dxr
-d - Frx +Gu (0-66)

-Txl r r r r

where

.xI

Ur -u-u 1 (0-67)

Note that the system equation given by (0-66) is degenerate because

Xrl *0.

The interpretation of (xrUlr) is evident from Figure 0-3. The controller

has no measurement of absolute time. By assuming that xpl u Xn1, it

concludes that t * t*. Actually

xI.
t*- t

Not realizing this error means that at time t

x- 

I

Un U n (t*) •un + Un

D-3G
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Note that even if

x p(t) Xn(t*)

p np(t) )i Un~ t)

To avoid penalizing control deviations that are due only to absolute time

translations in the trajectory variables, define ur as a perturbation

from u (t*); i.e.,
n

ur(t) •u (t) - Un(t*)
r p n

U (t) + u unit) - I

xII

"U-'x Un

This is identical with (0-67)

In the perceived coordinate system the error is xr and the actuating

signal is ur. With (D-66) we are now in a position to pose to a

rlr

,D-2.3 Quadratic Regulators

Using (0-66) as the dynamic model, a quadratic regulation problem can

be delineated. Define

Xp tf)

J lXr(tf)'pr xr(tf) +fJ(xrIQrXr + Ur'RrUr)dxpl (0-68)

Xpi(to

D-38

k- U'..



I..

The cost function J measures errors in the perceived coordinate system.

The error vector xr can be considered to evolve in R'n-1 since xr 0.

To facilitate comparison with the original coordinate system, xr will be

treated as an n-dimensional vector. Thus Qr is n x n.

From (0-56)

xr TrX (D-69)

where

0, 0 - 0
T 1,

fn

As was pointed out in Reference 0-2 (pg 5); the problem of minimizing

J in (D-68) is identical to that of minimizing

Xp tf)

J x(tf)P X(tf) +f 4qx + Ur RUr)dxp (0-70)

xP (to)

where

PTrPrTr , r r T'QrTr

0-39
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It is interesting to observe that T. Is singular. Indeed

Trfr a 0

Hence

f Pf a f 'Qf a 0
r r r r

The control system which minimizes (0-68) or ?0)-70) will try to resolve

the residual error into the f direction. This result is not surprising

when the motivation for selecting xpl Is recalled.

Since

d xp fi(XnUn)dt

it follows that

j • X;Prxr + (xr' (r fl)Xr Ur'(Rr f )ur)dt

to

From (0-67)

Un u
Ur'RrUr R (u - -- 1R "u -)

1 1(D-71)

Thus
tf

j x* f [U'Rr Tr T (T+ -URRUnTi))(

I 0

-2u'R u Ti+ f, U'RrUdt

1* where T1 - (1, 0, .,0),
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In the time domain the regulator problem becomes somewhat nonclassical

because of the inclusion of cross product terms in the integrand.

In the problem under study here, ur 'RrUr is a more reasonable measure

of control power than u'Rru and so we will say that (0-68) is equivalent

to a regulator problem in the time domain paraneterized by matrices.

(P,QR) - (Tr PrTr, flI T'r QrTr' fl RY) (D-72)

0-2.4 Changes in the Independent Variable

It may happen that xpI is absolutely continuous and monotone increasing

for only a portion of the trajectory, It would then be advantageous to

change independent variables at discrete points on the trajectory to

make use of a different trajectory variable with preferable properties.

Let tt0 iml, , , n) be an increasing sequence of points Inct0 , tf)

and suppose that the independent variable is changed at these time

points,*

The simplest class of such changes simply involves renumbering the states

in xn. e.g. xn1 becomes xn2 and conversely; f, becomes f and conversely.

Thus, while x is the generic label for the independent variable, xpI

may correspond to different state variables along the trajectory. A

change in independent variables creates a new matrix Tr(t) at

ý KpI(ti )} and consequently xr (t) changes discretely at these same time

points:

xr(ti") I Tr(ti") x # Tr(t.t ) x • xr(ti ) (0-73)

*-Second•o"rder errors are introduced by assuming the change of variable

is time based rather than being based on the perceived independent

variable,
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Al thoug h T is si n11lar, 1 D-73) c an be used with an addi t ion1a hypothos is

to find the change in xr. The vector x can be decomposed Into a compon-

ent along f and a component orthogonal to t

X(t) a (tlf + x (t)

Let

Xr2(t) s2(t)

~t)• ,(t) • ; etc

rn(t) n(t)

Clearly

Xr (t+) a Tr(t+)Xs(t+) (D-74)

subject to

fi'xs(t+) 0. (0-75)

Equation (D-73) can be written

where

f2 f 3  ff 1

I t (D-717)
r

, f L

(1+
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If it assumed that T is n0onsingular, then

Xs(t "+ -"(t-+) Xr(ti+) (D-78)

Combining (D-75) and (D-78)

Xs (tl÷ + Tr (ti÷+)Xr(ti÷) (D-79)

where

T uO '-if (--80)

0 To

TemriTr istecretpedrvreo nti rbe

X~r(ti ) * .( ti-)Tr (ti )X(,(tl4*)

*r(t )xr(ti~

The formalism of dynamic progra0•ining can now be used to produce the
control which minimizes subject to (0-67) and (0-81). The development

is routine and only the result is of interest:

ID-, .
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ur(Xpl P R , Gr- .. , x 1,r

dKr •-F r'K r KrFr + Kr G R.r,"I GR Kt -Qr; Xnl# 'n) (ti) i-l , , N

1ni

Kr(Xnl(tf')) + Kr(xnl(ti)) + P(ti)'Kr(xnl(ti+))r(ti); i-l, N

Kr.(Xnl(')) 2 'r

Note that Fr and Gr change discretely at the same points that T, does
because the form of fr changes at these points.

D-2.5 Introductory Examples

To explore the implications of the results presented thus far, and to
illustrate the mechanics of the indicated transformations, two simple
examples are useful. As the first consider the uncontrolled motion in
the plane given by

Vsin

where V is constant and • is a given function of time, monotonically
increasing and 0 , y , n/2 over the time interval of interest. For suit-
able initial conditions both components of & are monotonic and we will
suppose that the motion given by (0-83) is as shown in Figure 0-4.
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Suppose X is used as the independent variable. Then

tan y

Fr -0(0-84)

Suppose

qr" 2a 0,q ,r" diag (0, p 2)

Then (see (.D-72))

p 2 tan2y tan

2 Ltan y I Y~2 [tanY(0-85)

Q2
2 cosy tany siny siny

It q cs stny cosyI

Note that (V cosY, V sinY) is in the null space of both P and q and hence

any errors along f will not be penalized by either P or Q.

The method of selection proposea in Appendix D-1.2 attempted to achieve

this same effect by use of the transformation

T cosy siny(D-6)

-siny cosy

D-46
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As shown in Appendix 0-1.2, Equations D-26 and D-27, this gives normali-

zed values for P and Q of

1 -coty]Pw"P2 coty cot y]

2 sin y -siny cos-y

Qw q2 Lsiny cosy cos 2y ]
Comparing (0-85) and (D-87)

P " Pw tan2Y(tf)

(D-88)

Q aQw

Thus the two methods provide essentially the same weightings. The dif-

ference in P and Pw is attributable to the difference in the way maximum

error at impact is computed.

A more Interesting example is the control problem in the plane with no

autopilot dynamics. Let

g/? ,V cosy

a V sinY) - (a-89)

(A/V!

the control is exercised through the acceleration A. tt will be assumed

that A/V is small in magnitude and that X and Z are both monotone in-

creasing (See Figure 0-4)
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The problem is perhaps more easily studied in a rotated coordinate sys-

tem. Let TR be a rotation in the plane; i.e.,

( D-90 ).

T:. " .sine Cos;/.

where4 is the angle of rotation. Clearly

Det T TR'

Further if • is a differentiable function of time, then

-sl. 4 0 (D-9 1)

TRTR (0 0

Let XnT be the nominal trajectory in the new coordinate system; i.e.,

KnT TRXrn (0-93)

D-48
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Then

XnT U tRXn TRn
' !,

STRTR' XnT I TRf(TR' XnT) D-94)

fT(xnT, un)

II
From (D-92) and (D-94) )

( cosy - n

A/V + (D-95a)1

nT, u) V slny (0-95b)

A/V /

,2xnT + V cos (;-y)

T" InT V sn ('Y V (D-96)

Equation (D-96) gives the dynamics in the new coordinate system. If
; 0, then fT" f. If;, 90, then xnT1 - Z. By selecting the correct
rotation variable, one is able to choose either of the original posi-

tion variables in (D-89) as the independent variable for the problem.
Furthermore, time variable choices for permit still more flexibility.

Unfortunately, analysis of (D-96) is fairly difficult. To gain insight
iito the properties of the system, some interesting special cases will

D-49
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be investigated.

Suppose that 4w 0. Using the first component of XnT as the independent

variable yields.

f " tany (D-97)r
AV" 2 secy/

From (U-97), Fr and Gr are easily derived,

Fr-0 0 0e~

0 0 AV"2 tany secyj

Gr [0V"2 secyj

Suppose the nominal values for A and V are nearly constant. Then (0-19)

becomes
M0 " 0

V"2 secy][ 0 [ 0 1
M V"2 sec y - 0 (D-99)* 211

AV" 4 tany sec y yV2 tany se

00AV-"3 tany secy (V"1 secyr -1
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and
0 0

an0 V" secy if r. S 0

V"2 secy AV' 3 tany secy (V 1 secy -If)

LL

Clearly states 2 and 3 are controllable while state I is not.

Suppose next that 4 a 90. From (D-96)

/Vsiny\
I'T " V cosy) fr -coty (0-100)

\AV1  / \AV2 cscy/

Consequently,

[00 00

Fr 0 0 -csc 2y G; r j (D-101)0 .0v-AV coty e,=y LV-, 2 SYJ

As before

M~0M 0V' 20 s"

V"2 3s•

S-V 2 csc3y 0 (D-102)
L-AV' 4 cot., csc 2y] - V"2 cov., CSC-f

0)J"0

.V" 2 csc 3y l

L-AV 3 coty cscy (V,"1 cscy -1)

0-51
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and

r 0
SQf 0 -V"2 csc 3  if g90

SV"2 cscy *AV"3 coty cscy (V"1 cscy -1

The first two transformations are of obvious interest. Let us tur'n now
to some time variable relations. Suppose thatC-Y . From (0-96)

(AV4  xnT 2 4. 0

fT -AV'1  XnT 2  f r " nT1(xnT2 A*1V2) I (D-103)

\ v"I / \ nT2÷ A "V)

Let

XnT24' A'I V 2

Then

34"' * 2 3 L. V' 2A
3XnT2 3A

Consequently

F 0 01 [ 0
F .j- 1  nx -'2 0 Gq v2'x " (D-104)

SA L2  V2A-26 2 ]

0-52



IJIGICON .

It then follows that

S0

M0 • -V2A" 2  -2

rnT11

V2A-2 
1 "2

0 

0

MV2A2 2 -4 V 2A-2 A-2. d A'2
M1 -ZA2XnT1 x -- nT1 -XnT1 t

V A2 A- a"4x nT1 d A "2

and

v2Az x a 2 VA' X2 a-4 +V2A-2 -

.- nT nT (XnTQA 2 xnT) I.f.6-2) if C'
Y2A-2 4-2 2V 22--3

Observe that Q has the form

(00
2
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where Q2 is 2 x 2. From (0-105)

det Q, V V4A-4- XnT1 (D-106)

SV3A'3-3

From tits we see that states 2 and 3 are controllable, but only barely so.
If the nominal trajectory were constant (KnT2 a 0) Q, would have rank 1.

As a final example, consider the rotation

C a tan"1 N2 (0-107)Xni

The angle i! si,,,ly the look angle toward the target.

From (0-90) and (D-93) we observe that (see Figure 0-4)

./ 2, 2
nTl8 Xn•°S + Xnninl Xn1 Xn2  (0-108)

-nT20 nlin + XnjOS - 0 (0-109)

From (D-109) and (D-96) it then follows that

, V sin.) (D-110)
XnT1

.X
•,•r) X~~~nT1" V(cos (;-y) - -Xnz in ¢-y 01

0-54
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Thus

0 0 0

Fr 0 0 0

AV' 1 34.,_1 AV" L4:-' AVy "

L XnTl 3 XnT2 Dy

(D-113)

Vr 0

Direct substitution yields

I [Q31 Q32]

The system given by (D-113) has only one controllable direction.

The loss of controllability evidenced by (0-114) is due to the fact that
one position component is always Zero in the rotated coordinate system.

Only range and flight path angle are measured and these variables are not

enough to control the system. Suppose we augment the state by including

{ as a state variable. Since x 0, we find that

Anl"V cos (; -Y)

(0-115)

*-. sin (• - Y)
XnT1

A
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If we use xnT as an independent variable

(f r : nTltan(~ D16

Direct calculation yields

j .LfnTi-2an(4-Y) *xnT' isec2(;-Y) + T Sec 2(;-Y) ]
0 AV"2tan(4-Y)sec(;-y) AV"2tan(c-y)sec(;-'r)

F 0

From this we see that

m 0

00

LV sec(;-Y)

*v-2 xnT1 sec 3 (ý-Y)

Lvtan(;-Y)Sec (;-Yj

If is small, (Fr Gr is controllable in the two coordinates4 and Y..
If'
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0-2.6 Selection of the Independent Variable

In the previous selections the use of a state variable as the independent

variable is shown to ameliorate the undesired characteristics of the time

based controller. The analysis thus far has not addressed the issue of
selecting the independent variable when in fact several candidates possess

the requisite properties. In this section a means of performing the

selection is of interest.

Restricting attention to the class of transformations given by (D-90) and

to those values of 4for which

• xpl9) ,(TT( C )X pl) is monotone

and

dx (~
S) f r(xp,Up; ) (D-119)

Corresponding to a specific value of{ there is a dynamic equation of the
re-entry vehicle, Equation 0-119. To synthesize the best regulator, the

analyst must select a permissible value of gin such a way as to make the

closed-loop system perform in the best possible way. Observe that dif-

ferent system representations are being compared and a germane "docility"
index which would expedite this comparison would be useful.

Before defining a docility index for this system, a few observations are

apropos. Consider the nonlinear system of Equation (D-3) with its per-
turbation equation characterized by the [F, GI matrix of Equation 0-7.

-I7 the perturbation equation is controllable at time tV, it is well known

that any observed error x(tj) can be eliminated at time t2 >tl with
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minimum expenditure of control energy E given by (See Reference D-6)*

tI
E(x(t1)-, tV, t2) a (t 2 't1) f u (r) d r

t 1 (0-120)

0 (t 2 - t )I x,(t) Iw- I(til t 2 Wt 1)

where ft2
W(ti, t 2 ) f .f (t-,r)G( r)G'( r) I' (ti, r)dr (D-121)

tI

And Ois the transition matrix associated with F, Let { •.i(t 1 ,t 2 ) }be the
positive eigenvalues of W arrayed in decending order and let (ni(t 1 , t2 ))

be the associated set of eigenvectors ordered in conformity with
( ,i(tl, t 2 ) } . Let

ni a tim n1 (t1 , t2 ) (D-122)
t~.t 1

Recall the definition of the controllability matrix Cn as

C n- [M0. M1 9 . . -1

Mo u G (0-123)

Mk+1 a -FMk +Mk. k-l,

* To call E as defined by Equation 0-120 the control energy is something

of a misnomer in so far as the (t 2 - tl)'I factor gives E units more
akin to power. Still, in this application it is useful to think of E

as an energy figure with an implicit normalization with respect to the

time increment.
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The system (F, G) is completely controllable if the rank of Cn is n. In

this circumstance W (see 0-121) is positive and the minimum energy trans-

fer from any initial state to the origin in the interval [ t2Y is that

given by Equation (0-120) (See Reference D-6)

It was shown in Reference 0-7 that W can be expressed as the sum

W(tt, t) 1 'o MiM((t 0 )Mj '(to) (0-124)
iljI(i+j+jI)

iJ-O

?: If x0 is a unit elgenvector of W(to, t1 ) with associated elgenvalueX

then the energy required to drive xo to the origin is X

'I Suppose (t1 - to) is small, In the system of interest u is scalar and

Mi are column vectors. Retaining only third order terms
(t I - to)2 M 1

W(to't) (tt " to)MoMo ( + (M + M Mo') +

(0-125)

(t - t )3 M 0  M2M0 ' 21 3

-3 2 + _T_ + M MI' + 0 (t - to)

The elgenvectors{ ni(to, t 1) }of the positive matrix W span Rn and can be

found from the algorithm

1 IW max n' Wr ; Wn'r 1

W TI?

n n max n' Wn
SIn -0
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Let the associated eigenvalues be1 labeled Xi' X21 . . From.Equation

(D-125) it Is clear that for small (tI - t0 )

nl1 M0IM OII . (tX 1 0) 1tMoII
(0-126)

E( n i dt) -JIMo11 "dt' 2

The energy associated with the next elgenvector n2 can be similarly

computed

;n C(4i - M 1 Mo(MO'MO)"Mo)

(0-127)

E( n 2, dt) - .I- ( n2 'M1 Ml' n2 )dt 4

Where C is a normalization constant.

This procedure can be continued, but Equatiuw• (D-126) and (D-127) will

suffice for this problem. The directions nj andn2 can be thought of as
"easy" and "hard" directions to control, respectively. Since % G G, the

fact that •j - CM, simply expresses the fact that the first order in-
fluen'e of u is in the direction G. It is more difficult to cause the

system to move in then 2 direction as evidenced by the fact that E

(•j21 dt) is proportional to dt 4 . The energy figure for this latter

direction depends upon FG as well as the time variation of G.

The problem of using these energy figures to compare different indepen-
dent variables is made difficult by structural degeneracies in the

(FrI Gr) system (see 0-66). Indeed, since Xrl a 0, (F r, G r) can not be

controllable in the usual sense. Consider the system described by

(D-66). Mimicking the development leading to (D-123), (Fr, Gr) will be

said to be controllable if rank Cn -_* n-1;

0-60
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The controllability subspace would be all xr orthogonal to (1, O,.-.,0),

The energy content in the directions nzand n2 in the (xr, ur) coordinate
system follow directly from (D-126) and (0-127)

E(n,; dxp,( ) ) IMo -2 11% 1l21dXpldx( )1- (D-128)

(T2'IMI'"' 2 )-I 2 -4 '
E(n2, dxpl(4)) 311 il 2 11n211 I~ i•) DIg

From (D-120) and (0-129) the energy content is the product of three

types of factors. The first factor is the energy associated with a unit
perturbation in the ni direction. The second factorlIn1t'2 scales the
error with respect to the actual perturbation expected in the indicated
direction. The final factor scales the energy with respect to the in-
crement in the independent variable.

As written, (D-128) and (0-129) are not in a form which facilitates com-
parsion of different values of C. Each of the factors in these equations
depends on and simple scale changes in Xpl are translated into ipparent
changes in energy content. To form a valid basis for comparison, (D-128)
and (0-129) must be expressed as a function of the same error in the time

domain. From (0-3) it is clear that

dxp 1()t (TR()f(xp ,u ))ldt (D-130)

(D-130) provides the factor required to normalize the time interval over
which control is accomplished.
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The normal ization of the eliqjenyetors n is somewhat more subtle, A

qI ygive11 initial error in the xt 1 coordinate System is transformed in to aIiI
different appareiit error in the xr )-plane, Suppose there is an
Initial error x in the x0 -plane. This e'ror becomes x( ) C under the

transformation TR( )

' ~x( ) 4 TR( )

It was shown in Reference 0-8 that the perceived error when xP() Is

used as the vriable of evolution Is

.•r() 4 Tr(xp• P ))T R( C )x -al

where

S0 0 0

TrU r3 0h (D-132)

Ani initial er-ror x g;ives rise to all indieted error xll( of) the fol low-
I ng tumil

"Tr2 'Ti

Tr R""A•r 1-

fhe coefficients of the decomposition oif the error vector given above
initasure the rerative si e oif sonsud errors In the different. Coofdlinate
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systems. In the problem under study here x is not known a priori and

will be considered to be a random variable. In this case the relative

sizes of the initial errors in the xr coordinate system will be

In1 ll -116i'Tr(x pI( C ))TR(; )xll - , n-I (0-134)

where 6i is a unit vector in the n, direction,
I

Combining Equations (D-128), (0-129), (0-130) and (D-134)
E(n1 ; dxp1 ) 1IM011o 2 T(Rf)] 2I0lrT(

(1-13-)14

E(n2IdXp 1) • ( 62 M1M11 2) [(TRf) I11 TrTRXII dt'4

* I

For convenience let E(nlpdXp 1 ) 1 dt21+2 where ai is defined above.
With the energy content of errors in the n directions given by (0-135),
a scalar valued measure of system docility would be a useful intermediary

for comparing the relative merits of different values of C. Obviously it

there existed a value ofC say C* which minintmied a uniformly;

i mmin ,( C); i- , ... , n-I

then C*would yield the best possible choice for xP1 ( C). Unfortunately,
a uniformly best value of Cwill seldom exist, and the analyst must be

content with something less.

The docility index found most suitable for this class of problem is given

by H,
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where E I Idenotes mathematical expectation. That value of which min-

imizes H ( ) is said to be locally best choice of 4;

HiC*) inf H (4) (0-137)

Since a cannot be made uniformly small by selection of 4, the expecta-
ia

tion of the product of the a's is made small, Note that for 4 *

the controllability subspace of (Fr, Gr) is of dimension less than n-1,
and H (C a 4o) a 4. It is interesting to note that H (t) bears close

kinship with measures of controllability proposed in Reterences U-V and

D-10 which use det W"1 to induce a controllability ordering on the set of

admissible conrollers. Of course, the normalizations involved in deriv-

ing (0-136) makes the final criterion somewhat different.

It has been shown above that,if It 2 - tI1 is small and u is scalar valued,

E(nh; ti. t2 ) " It 2 " ti, 2(1-i)+ higher order terms;

11(D-137)
Ii- , _. n

The equations for the individualoi are given in the Appendix (see D-135).

(0-137) indicates that there is a natural decomposition of the state

space into a set of orthogonal directions characterized by the difficulty

with which initial errors along each of the directions can be eliminated.

For example an error in the 'easy' direction, nI, can be eradicated by an

actuating signal expending energy proportional to It 2 - i11
2. Observe

that as the time intervall over which control is accomplished decreases,

the amplitude of the actuating signal is increased. The asymptotic
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behavior of E represents the confluence of these antithetical limits.

In (0-137) the time factor It 2 - tlI is a fixed scaling, but the set

lIai gives a local indication of the systems ability to steer out errors.

Because only local energy figures have been derived, the relative merits

of different systems would be expected to vary with time. The way in

which these sets are used to form a performance index depends upon the

specific objective envisioned for the vehicle. An example of such an

index is given in the following section.

Different independent variables, or equivalently different choices of C,

give rise to different behavioral characteristics for the vehicle in the

coordinate system associated with the regulator. To put the problem of

selecting the best value of 4on a rational basis, some criterion of

choice is required. In the Appendix, one such criterion Is discussed.
In lieu of trying to minimize the individual values of the a in (0-137)

a function H is defined as follows:*

n-1

H() 4 17 mi(C (D-138)

i-i

This function orders the set of permissible independent variables, The

value of ;is sought which minimizes H;

H(*)- inf H (4) (D-139)

*As indicated earlier Elflai( 4 )1 is used when x(tl) is random,
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Note the .a are coefficients which characterize the energy content of a

class of errors in (n-i) orthogonal directions. In the unlikely event

that there is a value of Cwhich minimizes these energy coefficients un-

iformly, this value ofCwould be that indicated by (0-139). A more typ-

ical situation would be one in which improvement in performance in one

direction carries with it a concomitant degradation in performance in one

or more of the other directions. The index H provides an ordering of

possible independent variables in this more common circumstance satisfying

some but not all of the desirata used by Muller and Weber in Reference 0-9

to delineate a measure of the quality of controllability.

To illustrate these notions consider the dynamics model of a re-entry

vehicle whose primary motion is confined to the X-Z plane as in (0-89).

Observe that (0-89) is a very simple representation of the actual equa-

tion of motion for the vehicle. Neglected are the nonlinearlties, sam-

plers, autopilot dynamics, and exogenous influences which affect actual

vehicle motion. The simplification implicit in (0-89) is intentional

since one of the objectives of this study is to determine the degree to

which simple analysis models can be used to derive controllers for a com-

plicated dynamic system.

The class of transformations of interest in this study are fixed rotations

in the X-Z plane; i e. O0.

Direct calculation leads to the conclusion that

p (sn(Y-) f r " tan(Y-C ') (0-140)

AV" 2  AV' 2 sec(Y-co))

where it has been assumed that xp is such that xpi (C) is monotone.
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To findici , the system control labili ty 11m,1trix must first be found. Tis

matrix is given in (D-123).

C (MO.M,)

where (see Equation (A-4))

I Mo ( ( M! (V'sec(Y-4 0)) (D-141)
V. V2 sec(y .) .

Using (0-141) it follows that

n n2 O lin211(?)

(D-142) requires careful interpretation. The controllable subspace of

the perturbation equation associated with (0-140)can be decomposed into
an "easy" direction, nP, and a "hard" direction n,,. From 0-89 it is
evident that the easy direction is associated with an angular error and
the hard direction with a position error. This result is intuitively
appealing since the acceleration acts di rectly on Yand only indirectly
on position errors.

To compute the docility index given by Equation 0-138 using the 'esult
given in (D-135) only the appropriate amplitude normalization is yet to
be determined. (D-131) provides an equation relating the time based
error, x,and the error perceived by the controller x,,(;). Substituting
the required quantities into this equation

0 0 0 x( -41
S-snsec(Y-) cosysec(y-;) 0 x (0-14.)

(-AV-'cos1"6sec(Y-;) -AV"s'in~sec(Y-) I
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In the application of interest, the primary initial errors are in posi-

tion since the angular orientation of the vehicle is controlled quite

accurately during boost and freeflight. Suppose, therefore, that the

initial error in the (xn, un) coordinate system is given by

6 Z sinX, (0-144)

The parameterXgives the direction of the initial error and the size of

this error has been normalized. The perceived error resulting is

r(4 sac(Y-0) sin(,-Y) (D-145)

AV'sec(Y-) cos(X-4)

Assume that the initial error angleNis uniformly distributed on CO, 2Ir]

and is independent of Y. From (0-134)

un 1ii 1AV- 1 sec (Y-4) cos (X-;)l
(0-146)

l11211- Isec (Y-4) sin (X-')I

Substituting these values into the defining equation for H

A v2 V, 2

H({) W + 2 sin(y-J sec'(Y-0) (0-147)

From D-147 it follows that the best choice ofý at time tI would be
€.Y(t 1)

H(CY(t)) m•n H (W) (D-148)

A2 AV"2
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From (0-148) it is clear that the locally best coordinate system in which

to control the vehicle is one in which the instrantaneous pnsition is ex-

pressed in the rotated coordinate system shown in Figure 0-5. The in-

dependent variable xp 1 (;*) can be thought of a range variable and the

component of state in which error can be measured can be thought of as
a pseudo-miss variable, Although (0-148) would appear to suggest that

good performance could be attained by setting ý(t) a Y(t), time variable

rotation is not permitted by the hypotheses which lead to (0-148). The

rotation angle must be constant throughout the trajectory and as a con-

sequence a judicious choice forC would be that which approximates most

closely the realized value ofY for that portion of the trajectory of

primary concern. On a mission in which terminal miss is a prime per-

formance contributor, 4-Yn (tf) would appear to be a rational choice.

0-2.7 An Example

To explore some of the nuances of the synthesis procedure presented in
the foregoing sections, a simulation study was performed to test some

of the guidance laws described above on a sophisticated and relatively

complete simulation model of a particular aerodynamically controlled re-
entry vehicle. There were a number of questions to which this study gave

at least partial answer. Of most concern were the relative merits of a

time based guidance law and one which used a trajectory variable as the

variable of evolution. Secondly, the correspondence of the docility
index given by (D-137) and the observed behavioral qualities of the guid-

ance law were of interest. Finally, the general question of the utility

of the analysis model, (0-89), In constructing guidance laws was also
under inveitigation. There are four guidance laws whose behavior has
been studied in some detail, They aro:

U time is the independent variable

UX, downrange position is the independent variable ({, 0)

0.. ...
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U : altitude is the independent variable (,-f1/2)

U, ;myYn(tf)

The regulators UX and Uz are of interest because of their implementational

simplicity, In both cases a directly measured trajectory variable is

used as the independent variable. On the other hand, the independent

variable associated with U* must be computed from measured quantities.

Still U, is of significant interest because it locally minimizes H at

the termination of the trajectory. The regulator Ut is explicitly time

dependent and its performance forms a base of comparison for the other

regulators.

The weighting matrices in the performance indices for the regulators

were selected to penalize each of the regulators similarly for similar

errors. First consider (P, Q, R) in (D-11). The weighting on control

was constant and was essentially given by

R (D-149)
AA max

whereAAmax is the maximum permissible magnitude of variation of accelera-

tion from its nominal value. The state error weighting took the form

Q(t) m diag(q, Wt),q22(t) 'q3'"(0)) (D-150)

The state weights were ,

q1
2 (t) W h--,- (0-1i1)

(%X1 )max

where the allowable position error decreased nmnotonically from the

order of 10 feet at re-entry to the order of 10 feet at impact. The
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allowable angular deviation was also time variable but was mo1notonicafly

increasing. The terminal position weight, P, is given by

P • Q(tf) (0-152)

The weighting matrices for UX, Uz, and U* were defined similarly. In

each case the associated Q was diagonal. Because of the degeneracy of

the state space, q, is irrelevant and the complete position error is
weighted by q2. For this reason

-l
Q " i( ) (Oq4 +q 2

2 , q3
2 ) (0-153)

where qi is given by (0-151) and the first factor in Q, is time normaliza-

tion, the other performance weights are

/dx 1(4 1

(0-154)

P{ Q C(x p 1(t f -. )1

(D-153) makes the position and angular error weights in the xr () coordi-

nate system compatible with those used in deriving Ut. Note that UX, U,

and U, measure position error as a scalar while Ut senses a two dimen-

sional position error. The weighting matrices given by (0-149) throuyh

(D-154) provide like weights to like errors and the influence on perfor-

mance due to time scale distortion is avoided by the "velocity" factor in

(D-153) and (D-154).

To relate the docility index given in (D-138) to actual vehicle perfor-

mance, a simulation study was undertaken. The vehicle simulation equa-

tions provided a detailed description of the dynamic structure of an
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actual re-entry vehicle. This comprehensive model actually provided an

impediment to good performance for the regulators designed here because

these regulators are based upon a dynamic hypothesis that is deficient

in many respects. Of the simulation results obtained, those from three

numerical experiements are presented here. In each case the nominal

trajectory began with

X(to) order 10 feet

Z(to) = order 105 feet

to 0 ; tf % order 10 seconds

Y(tO 0 40,yr/4) ; Y (tf) c (it/4, w/2]

The three tests are described as follows:

1) X p(t ) - n (t ) . -order of 10 feet, xi(to) a 0 otherwise

2) Z (tO) Z (to) * - order of 103 feet, xl(to) a 0 otherwise
P 0 no0

3) No initial error, 0.9 times nominal air density on

CO, tf/2] , 1.1 times nominal air density on (tf/2' tf].

Figure 0-6 shows the result of the first test. For an initial X perbur-

bAtion the perpendicular path errors are plotted on a log scale. The

error magnitudes have been normalized, and while the relative errors of

the regulators are accurate, their absolute values have no significance.

All three time independent controllers behave in the way one would expect.

All begin with the same trajectory error arid in each case the error builds

up sli'ghtly because of autopilot effects. Becausn

- n (to0)<llyn (t -Yn (t f)1<Yn(to) -TT/2( ID-
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on the trajectory of interest, one would expect from (D-147) that the

preference ordering of the regulators would initially be Ux first, U,

second and Uz third. This is indeed the case as shown In Figure D-6.

For that part of the trajectory satisfying (0-155) the docility index
provides an ordering in accord with the trajectory following fidelity

of the associated regulator. Although the initial portion of the trajec-

tory is subject to aberrant drag forces and acceleration limits, the

slowly varying control gains tend to reduce sampler and autopilot effects.

The dynamic equation given by (0-89) is a fully adequate regulator syn-

. 'thesis model for 90% of the trajectory. The comparison of the time in-
dependent controllers at termination is obscured by autopilot influences.

Near the end of the trajectory, the regulator gains are rapidly varying,
and the autopilot has difficulty in providing a faithful reproduction of

the required actuating signal. Even here (see Table 0-2) the comparison
of Uz and U, with UX is that predicted on the basis of Equation (D-147).
The former regulators have impact errors that are within the best accur-

acy to be expected while UX has a somewhat larger error.

The performance of Ut as given in Figure 0-6 and Table 0-2 appears super-
ficlally to be incorruct. Far from causing a diminution of the initial

error, Ut causes the trajectory following error to increase by an order
of magnitude. The error of impact is inferior to that obtainable with
no feedback regulator at all. Another way of comparing Ut with the set

of Ur is in terms of the amount of control used on the trajectory. In a

guidance system using a performance index like (D-11), the regulator
seeks to use as little control force as possible while simultaneously

maintaining good trajectory following qualities. The magnitude function

-R'GKXlis a measure of the degree of apprehension with which the regula-
tor views its instantaneous state. Thus,

tf

- f IR-1rGrKr.Xr Jdt (D-156)

to
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Table 0-2. Guidance Law Performance

Performance Deviations

Closod-loop &DR Error in Mlight Time iuid
Regulator Perturbations Ft 'A of Nominal 7jujd-'i

ut Initial Downran . . . 1572 ,031 1

Initial Altitucle 3199 .34 1

De01i ty 325 -. U I

U Inintial downran(qu n.3 -.11 1 .45 x 10".

_Initial Al ti ud® 16., -,.9 5.35 W iu

Density 9.8 -. 7b 7,7 lu"

Un , n' e 0.*,3 -.17 9,3 10

InLtial Al ti tude 'U.4 .-. 7U .9 x I _•L,

Donsity 5.U -. 77 5.7 1 o"

U * I n iJ t i a g _ _ _ _•U_ _ _ _ _ _ _ _ _ 2 .0 - . 1 5 _,U_ _lo•_
I.n_ L ýAAL• /I.ilu (cIo 2.9 -. . .u4• .. , I It)'

Dolls i, y 4.6• -. 77 5.9 X7 L0"
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is a measure of disapprobation for the closed-loop vehicle trajectory.

Defining '(ý)in the obvious way, ' provides an indication of how control

intensive each of the regulators is. The actual value of the actuating

signal was not used as the integrand in (D-156) because saturation in

the actuators tends to desensitize this index. From table 0-2 where

the relative values of* are given, the regulator Ut is seen to use a

factor of 102 more control than is needed by the time independent con-

trollers. The excessive use of acceleration on the part of Ut is coupled
with trajectory following performance that is approximately 102 worse

than that attained with the Ur regulators.

The reason for the conspicuous inferiority of Ut lies in the way the

trajectory following problem is posed. The time based regulator tries
not to minimize the true trajectory error, but rather moves to correct

the error measured by x in (D-5). For the test shown In Figure 0-6 the
initial X error was such as to initiate re-entry at a point closer to

the target than the nominal starting point. Because the controller has

no way of slowing the vehicle directly, Ut reacts to that portion of the
error that is inherently a time translation by increasing the path length

of the perturbed trajectory. Increasing path length is control energy

intensive and tends to cause large errors normal to the trajectory. This

"time-equivalent" bubble is characteristic of time based regulators and

is not present in the response of the modified LQ regulators. Table D-2

indicates that Ut Is able to achieve much tighter control over time

of flight than can any of the Ur. Unfortunately, this attribute Is not

of any particular advantage in this mission.

Figure 0-7 shows the trajectory bubble for an initial Z error. Only the

nominal and the Ut trajectory are shown. The time independent controllers

would be indistinguishable on the scale of this drawing. Figure D-7 is
not shown to exact scale but is indicative of qualitative features

shown by the actual vehicle trajectories. As before, a small initial

error is caused to grow by Ut in order to slow the effective forward

0-77
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velocity. As was the case with an initial X error, Ut overcompensates

for the Initial time translation and has a perturbed flight time greater

than the nominal value. This timing error is presumably due to controller

saturation near impact.

The improvement factors associated with the time independent controllers

are repeated in this example. The Impact error of Ut is orders of mag-

nitude greater than that accruing to the alternative regulators. The
improvement in control utilization is again on the order of 100. Although

not shown in Figure 0-7, the relative performance of UX, UZ and U, was

in accordance with the predicted on the basis of the docility index H.
The previously encountered difficulty with UX near impact manifests itself

again. The excellent performance of Uz should be considered to be more a

function of fortuitous circumstance than design.

The final example provides an interesting assessment of the robustness of

the guidance laws studied here. In this simulation there was no initial
error, but the dynamic equation of the vehicle was changed by decreasing

air density by 10% on the first half of the re-entry trajectory and in-

creasing it by 10% on the last half. Ideally, the regulator output should
be nearly zero since there are only slight path following errors created
by the open-loop portion of the guidance law. The three time independent

guidance laws do follow the path quite closely, albeit at a different
rate than does the nominal. The related errors are uniformly less than

10 feet. On the other hand, as shown in Figure D-8, Ut finds the density

variation particularly bewildering. In the low density portion of the

flight a large error builds up as Ut tries to slow the vehicle by in-

creasing path length. When the sign of the density changes, Ut must now
increase its speed along the nominal path starting with what is now a

sizable state error. It does this in part by crossing over the nominal

path and impacting the ground short of the target. Because of this ter-

minal maneuver, the factor by which Ut deteriorates performance is less

than that found in some of the earlier tests.
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Figure 0-8. Trajectory Errors for Density Variation and Time as the
Independent Variable
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One peculiarity of the path flown by Ut is the fact that the time of

flight differs from nominal to a greater degree than do the other regula-
tars. This may be due to the disadvantageous state into which Ut forces
the vehicle midway in the flight. As Table 0-2 shows, U uses excessive

amounts of control force. As before Uz and U, are clearty superior to
I. Ux.U X

. While not exhaustive, this simulation study illustrates some of the be-
"4• havioral anomalies of Ut, The time independent regulators give perfor-

mance that is several orders of magnitude superior to that attained by

Ut. A comparison of UX, UZ and U* on portions of the trajectory where
the neglected vehicle dynamics had the least influence suggests that the

docility index given by (0-147) is suitable in this application. Further

j 'study is necessary to resolve certain apparent aberrations in relative
performance.

0-2,8 Conclusion

An aerodynamically controlled re-entry vehicle has dynamic pecularitles

which tend to discourage the use of "linear-quadratic" feedback regulators
in guidance. The disadvantageous features of the vehicle stem largely
from its weak controllability. By the simple artifice of using a traj-

ectory variable in place of time as the independent variable of evoluiton,
important deficiencies of the LQ regulator are avoided and a robust guid-
ance law produced.

' I The selection of this independent variable from the available alternatives

is complicated by the often contradictory exigencies of guidance law
simplicity and the dynamic response of the vehicle. Using a simplified

analysis model, this report provides an index of quality for the closed-
loop response characteristics of the vehicle. This index is phrased in
terms of the local energy content associated with perturbations from the

nominal trajectory. In terms of this index it is possible to rank dif-

II 0-B1
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ferent choices for an independent variable.

Although the index was selected with a view toward maintaining a reason-

able level of analytical tractability, it is still true that the form of
H precludes the development of a direct algorithm for finding the best

x P1p. Some intuitively appealing choices for an independent variable are

fairly easily compared, and it has been shown that the "natural" indepen-

dent variable Z has desirable closed-loop properties. For the trajectory

considered here either U or U, would be adequate. The superiority of

these regulators to the classical LQ regulator is readily apparent

both in the fidelity of trajectory following and in the judicious use of
available control resources. The performance of the time based regulator

is so poor that it does not appear to be a rational candidate for this

type of re-entry mission.

I

I

I'
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0-3. SELECTION OF THE INDEPENDENT GUIDANCE VARIABLE THROUGH A
STATE DEPENDENT ROTATION

In the previous section the use of a state variable for the independent

variable of the controller was examined. In the analysis it was found
that the transformation from a time based system to a system based on
any monotonic state variable avoids the undesirable performance of the
time based system and a docility index was derived which provides a
basis of comparison among the state variables in order that one might
be selected over the others.

The docility index and simulation results indicated that the locally best
choice for the angle of rotation which defines the independent variable
is the instantaneous flight path angle. An important restriction on the
previous appendix is that the coordinate system in which the regulator
operated was time invariant. This leads to certain ambiguities in the
interpretation of the docility index. Because local docility is being
measured, the relative advantages of different independent variables
tends to change along the realized trajectory.

In this appendix the constraint of a time invariant transformation used in
defining the evolutionary variable is removed and independent variables
depending on the instantaneous state of the vehicle are considered,

0-3.1 Problem Description

In this section attention Is restricted to the class of systems character-
ized by (0-119). A rather subtle difficulty emanates from a study of the
"implications of (0-119). Corresponding to different choices for there
are different vehicle descriptions given by (D-119) and as a consequence
different regulators given by (D-68). To provide a guidance law which
yields the best vehicle performance the analyst should select that coord-
inate system (value of ) in which the vehicle Is most amenable to

0-83
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control (most docile). To facilitate comparison of different choices

of 4 a scaler valued, local docility index was defined in Appendix D-2.

If the perturbation model [F(4),G(4)) associated with (11) is controll-

able it is well known that a state error can be eliminated In the "time"

intervalx P1p(t i),Xp(t 2 )] with minimum expenditure of control power P

given by Xpl(t2)

(r(Xp1(t1),t.ot2) • (Xpl(t2)-Xpl( t ))"I f U(p1 dp1

xpl(t 1)

(0-157)

It was further shown in Section 0-2 that if It 2-tII is small, there is a

natural basis for the system state space of the perturbation equation

associated with (D-119) Ini; 1,1, . .., n-11 such that

p(Mi's tiot 2) ' 'ilt2"- t~l '21 1-l,....,n-i (0-158)

The sequence Itiu-,,.,n-1) measures thb energy content in trajectory

errors in different directions in the Itate space. The most docile

system would be one which took as little control energy to control as

possible. It is usually impossible to uniformly minimize the a both
because of their complicated dependence on C, and because of their

dependence on xr(xpi(ti)). Since this latter quantity is often best

thought of as being random, the docility -index found most expedient In

Section D-2 Is given by

n' 1
I *H (S) - E 1176, (S) 1 (0-159)

The locally best choice of 4 is that which minlimizes H(i)

H(4*) inf H(C) (D-160)
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At this point in the development presented previously certain difficulties
arose. The choice of 4 rationalized by (D-160) yields that transformation

which gives the locally most docile system equations. Unfortunately the

locally optimal value of 4 changes as the vehicle moves along its path.

Since C was initially constrained to be a constant, the values of 4

studied were chosen with the value of C* in (D-160) used only as a loose
indication of the most advantageous choices for C. It is the intent of

this appendix to present the results of a study in which the performance of
regulator derived on the basis of continuously using the "locally optimal" .,

coordinate system is explored. This involves some substantial changes in

the evaluation of H since the "locally optimal" coordinate system is both

time variable and trajectory dependent.

D-3.2 A Locally Best Coordinate System

To illustrate the notions described above, consider the simple dynamic

model of (D-89). As is the case in appendix 0-2 the class of transforma-

tions of interest in this study are rotations in the X-Z plane given by

(D-90). In contrast, however, in this appendix4 will be permitted to be

a differentiable function of time. Direct calculation yields the

dynamic equation of the vehicle in the transformed coordinate system

n Vcos (C-Y)

xp(C ) • " C xni*Vsec (4-Y) (D-161)
\AVI

where4 must be such that xpi() is monotonn.

Previously a similar class of transformations were consideted with the

important restriction that4 be constant. To facilitate comparisons among
various possible selections for 4, suppose that 'he trajectory error at

time t, is given by
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x(t 1) : ksin>,) (D-162)

where Xis a random variable uniformly distributed on [0.2i], and

is uncorrelated with Xand satisfies

E (4) 01 E (l2) 2 y (D-163)

The form of x(t 1 ) is easily rationblized. A position error of amplitude

c exists in the (X-Z) plane in a direction characterized by X. Au error

in flight path angle also exists at time t . The relative amplitudes of

the position and angular error are quantified by Ey.

It Is important to note that a given error in a time based model at the

vehicle will appear as a different error in the coordinate system xr. Tho

most obvious reason for this is the fact that no perturbotion can be

perceived in the direction of independent varaible xpl. Hence, there is

an aliasing of errors when different coordinant systems are compared. In

order that H provide a comparison of docility for different vehicle des-

criptions, a common initial perturbation is a requisite.

The choice of x(tl) given by (D-162) generializes that used previously

slightly. Direct calculation as suggested in this reference yields

0 X, + see (Y-4o)(÷+sec"(Y- 0 ))] (D-164)

wher Re A' V ,!

The contribution of Ey to docility is independent o'f ;o as would be expec-.,.

ted since Yis left invariant by the transformatior, TR. The position com- <I
ponent can be minimized by selecting 40* Y. Then
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H(C.Y) C LY + A2---] (0-165)

While the substitution of C in (D-164) is appealing, it violates the

constraint thatC be constant. Hence (0-165) could be satisfied at a

single point on the trajectory, but it could not hold uniformly. Since

terminal miss is an Important performance contributor, an attractive can-

didate guidance law sould be one which was locally most docile near im-
pact; i.e. -Yn(tf). Such a guidance law would tend to be less favor-

able in the early stages of re-entry.

Because of the allure of the trajectory dependent rotation C u y , the

appendix outlines the calculation of H(CaYp). This calculation is made

difficult because of both the time variable and stochastic nature of the

sample of paths of C. To compute the docility index for- y observe

that from (0-161)

AV'1XM2 4V

X ' .AV'xn (D-166)

P AV'

In (D-166) and the equations which follow, the dependence of the variable
on Cwill be suppressed since only the single transformto T(- is

Rý p
being considered. Under the usual monotonicity assumptions, it follows
that

dx
X n1 ) (D-167) .!
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where &-~ x *,- A'IvL. To compute the performance of the regulator assoc-
fated with (D-166), the dynamic equation of the perturbation variables

must be computed (See D-66)

dx rTx-p Frxr + GrUr

where

Fr *- Ufn) Gr•u Xr1

Returning to (D-167) and noting that A is the scalar actuating signal

Fr - 6 -" x nlA'2 0 (r -- Xn: A'v2 )"2 (D-168)

To compute the docility index H the controllability matrix of (FcIr)

must irst bevevaluated. As is well known, the controllability matrix j
C2 " EMoMI 

'.

Mo 0  Gr (0-169)

Mk+I - FrMk + Mk

Clearly the system described by (D-167) cannot be controllable in the
usual sense since its first coordinate is degenerate. For the purpose

of this study. the system (D-167) will be said to be controllable if the

I E l
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space orthoginal to (1,0,0) is in the controllability subspace.

It was shown in previously that if xp 1 (t 2 ) -xpl(tl) a dx p1 is small

P(X(tl);dt) -dXp" x'(t) w'l(t11zx~I

where

dx (i+j+2)W~to 2) Mi(to) M i (to0)

) J0 i jI(i+J+l)i'o

For small dxp 1 it was further shown. that there is a natural decomposition

of the controllability subspace into directions which differ in their

power content. Specifically if

n, Mo11Mo 1-1
0 0

then

P (nl; dxp 1) 1IMo11- 2 dxp- 2  (0-170)

Or if C is such as 'o make 11r 2 11 - 1 and
n2 a C(M1 - M ' M (M' M 0)1 M0)

then

(n1dXp n I Mn M IM n )'1 dXp4 (D-171)

Since the derivation of (D-170) and (D-171) is contained in Appendix 0-2,
it will not be repeated. It might, however, be useful to review the

intuitive meaning of these relations. Comparing (D-170) and(D-171), it

is clear that errors in the n direction require far less control energy

0-89



for their eradication than do e,'rors in then2 direction. The reason for

this is quickly discernible. The "easy" directionn 1 is seen to be along

Gr, the direction of direct influence of the actuating signal ur in (D-67).

The "hard" directionn2 is orthoginal to Gr. For the controller to reach

an error In then, direction, it must work through the system dynamics

(See the Fr, and Gr terms in (D-169). Since the 2 direction can only be

influenced through the "low pass" intermediary of the system equation

(0-166), the power required to eliminate the n2 error in a short time

interval becomes quite large.

From (0-170) and (D-171) it follows directly that

S• (+X 21/2 2 n /2 -

( n1)In

(0-172)

Equation (D-172) has a rather interesting but subtle interpretation.
From (D-93) it follows that xp2 is a position variable and xp3 is flight

path angle. Because xn1 is large over most of the trajectory, (0-172) in-

dicates that a position error is 'easy" to correct while an error In

flight path angle is "hard". This is counter-intuitive because (D-89)

shows that an acceleration acts directly on flight path angle, and indeed

if C were constant, the regulator always finds Y to be the easy variable

to control. The reason for this anomalous behavioral characteristic lies

in the fact that the coordinate system defined by TR is now influenced by

the controller. The punctilious response induced by J results in the

curious relationship of ni and n2,

To compute the power figures given in (0-170) and (0-171), note that
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--. "° .



r
IJGICON

0

Mo0  ( Xn1 A' 2V 2 )" (0-173)

A"2 V26 -2 /

If we assume that A and V are slowly varying and xnl is large

* ) /0

M1 I .A-1 V (A-- . 24-3 xn1 (0-174)

2 A'1 V A' 3xnl1

Substituting (0-172) - (0-174) Into (0-170) and (0-171) yields

I

P(nl; dxpl) "xn 1
2 A2V242 (dt)-2  (0-175)

P(n2 ; dxp,) A-A2V2Xn6 2 "2 (dt)-3

where it has been noted that dxl * AV- 1 Adt.

(0-175) gives the power content of unit errors In then 1 andrn2 directions.
Because a given initial error will be transformed by T(ý ) into a dif-
ferent error in the x r - coordinate system, an amplitude normalization is
required. It can be shown directly that if4-%o a constant, then

0 0 0

Xr(ýo) U -sinYsec (Y-C0) cos Y sec (Y-%) 0 x

-AV'2coso sec(y-; ) -AV' 2 slnýosec(y-%) I

(0-176)
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When 4-yp things are more complex. Note first that if y Yn ''

dxp • dTR(O) xn + TR(C) dxn (D-177)

Suppose the errm, at time tI is given by

x M C seo (0-178)

where E<<l. From (0-177) and (D-178), the error in the rotated coordin-

ate system x(;) becomes

)Xnl + sin (X-Y)

To reflect this error into the x r coordinate system note that

Xr uTr X(4)

where 0o 0 0)
T r f "r 2 1 0

3 0
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Direct calculation from (D-159) yields

a &V Y y AV-4 2(_O

H( 0) " - y 7 sAc2 (y )n(1 + sin (D-183)

If A and V are nearly constant, a comparison of system performance using
constant and variable C is made easier if the docility index is parameter-
ized In terms of R and 9 (See Figure 0-10) Direct calculation yields

"H 2 - sec R*+ r( 3csc29 + se29 - -. sec 9csc]

H R aYO) 11[a + R2sec (Y-4 )(I + sec 2v(Y )] (D-184)

Comparing (D-164) and (D-184), it is clear that Y p shows an improvement
over C ao on the order of V2.

The result given in (D-184) is initially rather su'prising. As expected
4, Yip s superior to any constant value for 4 when H is considered over
the whole trajectory. Still the improvement factor is quite large on the
trajectories considered. The reason for the pronounced enhancement of
regulator perfot~mance lies in the way errors are measured when ; Is
trajectory dependent. For now suffice it to say that letting . p
adds a new degree of flexibility to the regulator given by (D-68). To
see this observe that the analyst studying the performance of the regu-
lator associated with 4 - Co may select ;o to provide good performance

on one segment of the trajectory. Still, once 4. is chosen, system
behavior is circumscribed by the restrictions inherent in the fixed coor-

dinate system. In contrast, C Y Is not fixed initially and in fact
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will change as a function of trajectory errors. More fundamentaly, Y is

a controllable quantity. Therefore, when ý-Y the regulator can actually
p

control the coordinate system in which errors are measured. The way in

which the regulator utilizes the pliancy of the coordinate system is
rather cunning.

I
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APPENDIX E

ADDITIONAL STEERING LAW TOPICS I
In this appendix, two topics related to the general problem of development
of steering laws for an aerodynamically-controlled reentry vehicle are

considered.

In Section E-1, the influence of autopilot states in the calculation of
controller gains calculated using the LQ regulator formulation is examined.

This analysis is motivated by the potential reduction in model size

achievable If the influence of the autopilot states is weak,

In Section E-2, certain aspects of imperfect state estimates and their
relationship to the LQ regulator used for the steering law (or controller)

are examined. This analysis is motivated by the realization that the on-
board sensors are imperfect and indeed can also experience failures.

E-1, INFLUENCE OF AUTOPILOT STATES ON SYSTEM PERFORMANCE

E-1.1 Introduction

Simulation of the nonlinear model of an aerodynamically-controlled reentry
vehicle has indicated a potential source of instability associated with

the autopilot loops. The LQ regulator portion of the guidance law is
derived on the premise that the vehicle states are continuously observable

and the actuating signals vary in response to changes in state. Actually,
guidance is accomplished from sampled observations of state errors, and if

the guidance loop gains are too high, unpredicted instability can occur.

This problem has proved to be particularly troublesome in the autopilot

loops when autopilot states are included in the guidance law.

Stability margins in the nonlinear model can be significantly improved by

the simple artiface of reducing or eliminating the penalties associated

E-1
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with the autopilot errors in the performance index. Small weighting on

autopilot errors tends to yield small feedback gains and this in turn
minimizes the stability problems created by sampling. Indeed, satisfactory

system performance has been attained by simply setting the autopilot gains

equal to zero.

This latter observation suggests that the dynamic properties of the auto-

pilot may not be essential in the gain calculation for the LQ regulator

guidance law. If the autopilot could be eliminated from the linear vehicle

model, this would simplify considerably the solution of the Riccati equa-

tion which is an intermediate step in the gain calculation. There would be

fewer weightings to be selected in the performance index and the overall

design problem would be made easier.

This appendix gives the results of a study of the influence of model simpli-

fication on closed-loop performance. The results are preliminary in that

only the properties of the linear perturbtation model are explored, A more

complete analysis will require simulation of the nonlinear vehicle model

to validate the results derived here.

E-1.2 Model Reduction

Suppose the dynamical equations of the perturbation variables (x,u)

satisfy the linear differential equation

- F(t)x + G(t)u (E-1)

x(t) 0 x0

The advanced guidance law is that feedback regulator which minimizes
tf

J u x(tf)' Pf x(tf) +f (x'Qx + u'Ru)dt (E-2)

to

E-2
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The structure of the advanced guidance laW has been explored in manny

:1 references (see for example, Reference E-1) and the form of the guidance
law can be given explicitly

u -R'1GINx (E-3)

subject to

P -F'P - PF +PGR 1 GIP -C to t tf (E-4)

P(tf) a Pf

given by -1 ,, 1
umw-R IGK

fl where M is a nonnegative symmnetric matrix. From (5-3) the advanced guid-
ance law is given by u P,

Let Jbe the performance associated through (E-2) to the control uM,

Suppose that it Is possible to write yM in the form

for all to 0 t f, Then

From (E-1) and (E-5)

S (F - GRG 'M)x (E-8)

E-3
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Differentiating the right side of (E-2) with respect to to, it follows

that

U M(to)ato - -X(t 0 )' Q(to) x(t 0 ) - u (to)R(to)u(to) (E-9)

Combining (E-7) and (E-9)

PMa -(F - GR'IG'M)'PM- PM (F - GRIG'M) - Q - MGR"IG'M (E-1o)

PM(tf) a Pf.

If we substitute M w P in (E-1O)

, •p -(F - GR'IG'P)'P - P (F - GR'G'P) - Q- PpGR p CE-l)
p p GP p pR G'P p

Pp(tf) 0 Pf

Comparing (E-4) and (E-11), it is clear that

Pp"

and as a consequence the performance of the regulator up is given by

j - X(t 0 )'Px(t 0 ). (F-12)

Thus, in addition to its role in the gain calculation, P is actually tho

"cost" matrix as well.

Supose that M is nearly equal to P; i.e.

M P + 6P; Ii1PII < < HPII

E-4
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Denote L. 6P the corresponding variation in PM;

PM "P + VPM (E-13)

From (E-1O) .1

j'. • P + ",P•

-(F -GR
1'G- (P + P))'(P + 6PM) -(P + 6PM) (F -GRIG' (P + 6P))

-Q- (P + 6P) GRG'I.(P + 6P)

Using (E-11)

S a -(F - OR 1-'-(P + 6P))'6PM -6PM(F - GR1IGI(P +6)

S- P GR' 1 GldP (E-14)

6PM(tf) - 0.

To gain insight into the structure of (E-14) consider the following identity.

Let A(t) be defined LI

tA(t) " (A• t B A(tT)dt (E-1,5)

Then
dA~) + tf (CA' (t-T)BG A(t-T))d-r

= f Tt

4

E-5
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dA ( 6Fti T "-B + A'A + AA (E -16)

Comparing (E-14) and (E-16), assuming the coefficient matrices in (E-14)

are nearly constant and using the fact that P + SP a P

tf
•pM(fo) (F - aw's-p) (to -TSp GR-, pC- .R Gp) Ct "E-i7)

to

If (F,G) is controllable, the maximum eigenvalue e-(F - GR'1G'P) can be

used as a norm of the matrix exponential. Clearly

I)6PM(to)ll s (tf - toI)IIGR H IG I3P11 2  (E-i1)

Consequently, a variation in P gives no first order change in PM; i.e.

aPM0 
(E-19)

M- P

The sensitivity of system performance to changes in gain is zero near

-R 1IG'P. Any changes in the system model which create small changes in

gain will cause essentially no change in system performance.

E-6
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The small sensitivity to gain changes is important in this application
only if we chn show that the desired changes in system structure give rise

to small changes in gain. Elimination of the autopilot states changes the

order of the system equations and is not a small variation in the usual

sense. Suppose F and G experience perturbations 6F and dG, resepctively.
The corresponding value of the cost matrix becomes

P+6P (F+F) (P+6P)-(P÷P)(F+6F)+(P+6F)(G+6G)R'(G+6G)'(P+6P)-Q

Consequently

dP • -(P - SP - 6P (T - (R': ) (E-ZO)

-P (OF - 6GR'16') - (6F - dGR'9'P)'P

dP(tf) • 0

where

SF+F, G + 6G, P + 6P

The equation for P has the same stability properties as does that for the

P matrix associated with the perturbed system. It follows from (E-20)

that 11011 will be small if ItP(sF - 6GR'I '7)11 is small. One of the

factors is fairly obvious. If aF and sG are small, then G 1 9. Con-
sequently, &F - sGR' V is small if the first variation in the closed-

loop dynamic matrix is small. A small change in the closed-loop system

dynamics will produce a small change in P, but the converse is not as

strong. To gain more insight into the effect of the autopilot states, a

simple example is useful.

E-7
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AN EXAMPLE

Suppose we consider a simple trajectory in the plane described

by

X*cosy
Z• siny (E-21)
y-A

A • an(A - Ac)

The variables have the obvious interpretation and an is the nominal corner

frequency of the acceleration command autopilot. The perturbation equations
associated (E-21) are easily derived and have the form given in (E-1) with

0 0 -siny 0 0

0 0 cosy 0 0

Fm 0 0 0 1 G 0 (E-22)

0 0 0 an .an.

Suppose we wish to investigate the Influence of the autopilot state. One

way in which the autopilot can be effectively eliminated is to set the
autopilot corner frequency equal to aM where aM > > .

0 0 0 0 0

0 0 0 0 0
6F S; G * (E-23)

0 0 0 0 0

0 0 0 aM "an an " aM

E-8
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Clearly, neither 6F nor 6G is small.

Let us partition P, F, G, and Q as follows:

P - F " 0 i ", (Ll'i P12J 1 r' ii a' 1[ 11 0E 21 221 L21 ~22 JL2J L 0

where P22, F22 G2. etc, are scalars and the other elements are of compatible

dimension. We will assume that weighting Q on state errors provides no

penalty for deviations in autopilot state from nominal. Since the

actuating signal is one dimensional, R is scalar and will be denoted by r.

Expanding (E-4) and noting that P is synsntric

P11  "-Fj1P1  P11F11  1P2 F - FjjPj2 -Q r PizPi2

a -2 PPI , G2 2

2 "2F2 2P2 2 " P2 1P12 - + 21P 22
22

02
ý12 * "PllFIF2 P12 F2 2  F F11 P12 - FI'P 2  G 12 P22

P12(tf) 0 0, P22 (tf) * 0

Let us assume that a. and therefore F22 is large compared to one and

that P12 and P22 are of compariable norm. Then

P22  -2 F22P22 + P22 (E-26)

E-9
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The nontrivial stationary value of P22 is given by

S2rF 2 2  2r (E-27)

"022

Suppose P22 differs from the solution given in (E-27) by a small amount

c. Then

2 222-F22(P22 + (P 22 + C (-2F 22  r 22)1C

Frnm (E-26) then

*2F22 (E-28)

In (E-28), F22 an and an > 0. The stability properties of (E-20) are

more easily seen if we use the change of variable T w tf - t. Equation

(E-28) becomes

de , -2ane (E-29)

Equation (E-29) is stable thus suggesting that P2 2 is very close to the
value given in (E-27) for all t outside of a small interval containing tf.

Next, let us look at P12 in more detail. From (E-25)

I G22

P12 + ,l (F2 2 - "L" P22) I) P12 " P11F12  (E-30)

E-10
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But

F2 2  r i 22 an

or

P12  -(F{i - anI)P12 P11F 12

By assumption anI > > Fji and thus

p

12 n anP12 " P11 F12  
(E-31)

The stability properties of the equation for P12 in (E-31) are those ex-

hibited by c in (E-29). Consequently,

P12 a n (E-32)

We are now in a position to complete the analysis of the P equation by

looking at P 1. Since F2 1 = 0.

pl "1 "FlPjj - PllFjj " Q11 + r P12 P12 (E-33)

But

G 2 , a2 n PI1 F12F'i2P1
_ P 12P12 p a 2

Sll12 12P11

E-11
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Consequently

I:I

Pj, ,I1ii" I ,Fll Q11 + 1 r11 2r'F(2 P) E-34)

Equation (E-34) is precisely the equation that would result if

F G (E-35)

From the preceeding equations it becomes clear that if the autopilot
corner frequency an is large,

ni

HIP2211 -o(,.)*
(E-36)

II1211 -*41an

The limiting value of P is that which would be associated with a reduced
order model containing no autopilot dynamics. If we assume that aM a > a

0 0

or

116PI] - o(a ) (D.(E-37)an

From (E-37) it is evident that the large magnitude variation in F and G
gives rise to a small variation in P. Because of the small closed-loop
sensitivity to variations in gain (see E-19)), the system performance
will be unaffected by the elimination of the autopilot state in (E-21)
if the nominal corner frequency an is high.

E-12
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E-1.3 Conclusions

This section has provided a preliminary analysis of the influence of elim-

ination of autopilot states on closed-loop system performance. If the

autopilot dynamics are neglected, certain stability problems are reduced

and the calculation of the guidance gains is made simpler. Because the

effective order of the system dynamic equation is reduced, the removal of

the autopilot does not correspond to a small variation in the [F, G]

matrix. Consequently, the usual perturbation arguments can not be used

to study performance sensitivity.

I The proof that autopilot states are of little importance proceeds in

two parts. First, it was shown that linear regulators with gains close

II to those appropriate for the advanced guidance law have performance that
is Indistinguishable from that attained with the correct gain. This is
a general property of the advanced guidance law. Small gain errors from

whatever source have negligible Influence on performance.

The next step is to show that a change in system order yields a small

change in gain. In contrast to the preceeding sensitivity property, the

influence of order reduction makes essential use of the structure of

CF, G I . Order reduction c:aue. a big cnre ioM h.to nominal dynamical

3 matrices of the linear perturbation model. To show that the ensuing

gain change is small, requires more than a sensitivity argument because

second and higher order perturbation terms must be retained. One may

either show that the solutions to (E-20) are small or show directly that
the value of P corresponding to CF, G] is close to that associated with

,. EF, G] . It was shown by example that for motion in the x-z plane, the

acceleration command autopilot has little influence on system performance

if the nominal autopilot corner frequency is high. It is expected that

a similar conclusion would follow from analysis of the seven dimensional

models for motion in R3.

E-13
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Since only the dominant terms in the Riccati equation were retained in

this analysis, it is Impossible to state quantitatively how large an must

be to permit its benign neglect. A more detailed analysis would be neces-

sary to provide this type of information.

i.1
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E-2. INFLUENCE OF SENSOR FAILURES ON LQG REGULATORS

E-2.1 Introduction

The solution to the linear-quadratic Gaussian (LQG) regulator problem has

a number of attractive features which suggest its use in applications (see

Reference E-2). The synthesis algorithm leads to a linear feedback regu-

lator with gain given by the solution to a matrix ordinary differential

equation. The controller is, thus, relatively easy to implement. Of pri-
mary interest in this paper is another idiosyncracy of the LQG regulator;

certainty equivalence. As pointed out by many investigators, the LQG
regulator has a natural decomposition into a filter which generates the best

mean-square estimate of the system state and a fixed gain controller inde-

pendent of the observation mechanism. This latter property is desirable

in on-line applications because to make the controller parameters contingent
on the realization of the exogenous influences, would yield a system of un-

acceptable complexity.

This appendix considers a situation of a somewhat more general sort. Speci-

fically, concern is centered on the influence of changes in the observation

equation. The motivation for this work was a study of the operational

characteristics of reentry vehicles. Such systems have continuous sensors;

e.g., an inertial measurement package; and may, at discrete time points,

make additional position measurements using a separate group of sensors.
Particularly these latter measurements are subject to untoward influences

due to both environmental effects and internal failures. It is, therefore,

of interest to determine how the regulator should be modified in response

to these events of uncertain occurrence.

There are many excellent papers extolling the virtues and explaining the

limitations of LQG regulators. This appendix will use the notation con-

ventions of Tse and Reference E-5 whenever possible. Of particular inter-

est is the exploration of the nuances of a supposition of Tse to the effect

E-15
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that an optimal regulator will have the certainty equivalence property if

(Reference E-3, pg. 780):

1) The conditional mean of the state characterizes the

observation a-field

2) The conditional mean of the state has the same dynamical

equation as does the state.

3) The cost is quadratic.

E-2.2 Problem Description

The system to be controlled and the feedback link will be described by

linear equations (see Reference E-2):

Ax+ Bu + 9 0 t < T (E-38)

y • Cx + 8 (E-39)

where x is the system state, u the actuating signal, and y the observation

signal. The signals c and e are white noise processes independent of each

other and independent of x(O) where x(O) is Nor (xo' EM()). Fcr reasons

that were explained in the introduction, it is advantageous to generalize

the observation equation (E-39) slightly. Let I be a discrete set with

elements (tl,..., tn} and assume

E &(t) 0 E &(t) &(T)-•t) 5(It T )

(G(t) 6(t - )t (E-40)

E e(t) .0; E 8(t) O(T) 0(t) t T C I
S0 Otherwise

The feedback link transmits continuous aggregated observations of the sys-

tem state with white additive noise except for a discrete set of times of

which a higher quality set of observations is transmitted. These latter

E-16
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observations may differ in type from the former, and C may be discontirnuous

on I. The performance index is quadratic
T

J E Ex'(t) Sx(t)]+ f (x'Qx + u'Ru)dt (E-41)

0

where S, Q, and R satisfy the usual hypotheses.

The basic element which distinguishes this problem from that of Tse is the
possibility of sensor failure. Let the random process r(t) represent the
mode of operation of the feedback measurement link and suppose C and e
depend upon r; i,e.,

(C(t), e(t)) - (C1 (t), ei(t)) if r(t) • i (E-42)

Thus, the feedback measurement gain C or the observation noise level 9 may
change In some random fashion. The indicator variable r is a finite state

Markov process characterized for small 6 by:

1- P1u(t)a + 0(A) I t I~~

Prob (rit + a) - Jjr(t) - I) - pj(t)A + 0(a) 1 0 J, t I
li1 (t)A + O(A) t C I

(E-43)

Let N ] To see the implication of (E-42) and (E-43) suppose that
r a corresponds to normal operation and r a 2 represents a degraded ob-
seivation; e.g., 02 (t) > 0 1 (t) or C2 (t) C2 '(t) ' C1 (t) C1 '(t. Equation

S(E-43) gives 4 failure "rate" of p12 (t) for t ý I. If N(t) a I for t e I,
(E-43) admits the possibility of failure coincident with discrete update.

This could be due to a component overload, or to the fact that a prior
failure only becomes apparent when the updating sensors are interrogated.

I
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If the realization of r were known a priori., (E-38) - (E-40) would delineate

the LQG regulator problem. The optimaA1 causal control policy is linear and

Equation (E-38) (formally) generates a Gaussian random process. Under (E-42)

and (E-43), this will no longer be true. Let I. ; tcEO, T]) be the ob-
sorvation u-Fields at the controller;

+ ( r(), r(r); o C,[ t] (E-44)

Note that perfoct measurement of r is permitted in the feedback link. This

is an idealization, of course, but this assumption leads to a far more

ana.lytically tractable problem. The basic problem is to find a function

u(t) adapted to Jt such that (E-41) is minimized.

E-2.3 Solution Algorithm

Before considering the control problem, consider first the problem of esti-

mating x. At first glance this might appear to be a formidable obstacle

because of the random coefficients in the observation equation. Actually

this is not the case. Because r(t) is t measurable and a Markov process,

the equations of evolution of the conditional mean take on the form one

would intuitively expect. A certain amount of tedious calculation yields

the following results: Let

A(t) - E ix(t) l ~}(E-45)

Then

Ax^ + BU + Wiv; r(t) a i, t I

k(t) - (t') + WI(t)v(t); r(t) - i, t c I (E-46)

x(O) -0

where

E-18
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X Ev 0; Ev(t) d(r) • eo(t) + C1(t)n(t')Ci'(t); t r 1, r(t) I

S0 Otherwise

(E-.47)

.( ) ,(t) Ci(t) (t t I, r(t) • I

(E-48)

i.(t) - Az + r:A' - %.C (OI"I C iý 1 , r(t) - I

E(o) . to

ii Observe that if t ý I th, equation for x "has the same dynamic(s) as the

original process except with different driving disturbance" (Reference E-3

py. 780). For t e I, x may have discontinuitie,, a property not shared by

x. Note that the noise intensity is random in (E-46) both through W and

the covariance of v. Particularly the former depends upon the past history

of r through Its dependence on ):. Further, W is not deterministic as was

the case in (E-2), but it is adapted to Yt'

Using the argument of Tse in toto It can be shown that

t) T loT

J - E (t) SX( u'Ru)dt + Tr(S:(T) + QAd)i)

(E-50)

In contrast to the LQG problem, the last two temps in (E-50) are random.

Because the last two terms are also unaffected by the control policy, a

control problem of a fairly standard sort results. It is shown in Section

E-2.6 that the optimal quadratic regulator is given hy

E-19
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u -R' B' Kx (E-51)
with

w ithO K(O) x(O) + Pr(O)( 0 ) + E 1Tr(Sz(T) + Q~dr)} (E-52)

0

where
K • -A'K - KA - KBR 1'B'K + Q (E-53)

K(T) - S

p--Np -rt I (E-54)

p(t) - Np(t) a r t •: I

p(T) -0

where p and r are vectors with elements

P- [Pi] r * [Tr KW1  v v' W1i (E-55)

E-2.4 Properties of the Optimal Regulator

The most interesting attribute of the optimal regulator given by (E-51) is
the fact that the certainty equivalence property is preserved in the pre-

sence of sensor failure. The evolutional equations of ' satisfy the

dynamical equations of the controlled system almost everywhere, and this

produces the desired result, The resulting closed-loop system does not

have Gaussian solutions because of the multiplicative influence of the

random process r.

It is interesting to compare the result derived here with that derived in

a closely related problem. In Reference E-4, full state feedback was per-

mitted and consequently x - ^. In this reference the times of discontinuity

were not predictable as they are here. Even after factoring out some other

dissimilarities in the statements of the two problems, a fundamental dif-

ference in the solutions remains. The primary reason for this is the fact

that the change In state at points of discontinuity i,, Reference E-4 was
"1multiplicative";, i.e.,

I -20
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x(t) r 1 x(tC) if r (t) J, r(t") i,

while that of (E-46) is additive. Although the system of Reference E-4

satisfies all of the desirata of Tse, separation in its strongest form,
(E-51) fails. In the referenced problem, the control component of the

optimal regulation policy is independent of the additive noise terms but

depends explicitly on r, and consequently can be seen to possess a weaker

form of separation. In both cases the "filter" portion of the regulator

•" I depends upon the exogenous variables.
~I.

Though (E-51) is unrelated to sensor reliability, the same is not true of

the performance. Equation (E-52) has a natural decomposition into a state
independent term related to filter performance. The components of this

latter term proportional to E(E} clearly increase as the likelihood of

failure increases. The driving term in the p equation, r, is proportional

to C'C and inversely proportional to o. The Pr(o )(0) component of cost tends

to decrease with improved filter performance. While these terms can not be
expected to cancel, they do provide some measure of compensation.

The structural result given by (E-51) and (E-53) can be generalized weakly

to the case where the parameters of the open-loop system (E-38) vary with r.
Using classical techniques, it can be shown that if 7 depends upon r, (E-51)

and (E-53) still give the control portion of the optimal regulator. If,
however, (A, B) varies with r, the gain in (E-51) must be made contingent

"on r. This effect was observed in the noise-free problem with randoin jump

parameters.

E-2.5 Conclusion

This appendix has considered the influence of changes in the parameters of

the observation equation on the feedback regulator optimal with respect to

a quadratic performance index. The feedback gains were seen to be unaf-

fected by sensor variability of a specified type. This characteristic

E-21
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has important practical implications because the controller gains are often

stored on a special purpose computer for on-line implementation of the

regulator.

The underlying explanation for the strong separation displayed by the con-

troller lies in the passive nature of the lebrning task as perceived by the

controller. This avoids the dual control problem which would arise if r

were not perfectly sensed. As pointed out by Tse in Reference E-3, the

dual control problem will admit no such easy solution as obtained here.

E-2.6 Proof of Equation E-51

The proof of (E-51) follows the standard formalism of dynamic programming.

Let J* (t, ̂ (t), r(t)) be the minimum cost to go;

J*(t,x(t), r(t)) E x'(T)Sx'(T) x' Qx + u'Ru)djJ-T

(E-56)

It is well known that J* satisfies an equation of the Bellman type

0 - min ((ý'(t)Qi(t) + u(t)Ru(t))dt + E dJ*t.,-t (E-57)
u(t)

Generalizing Reference E-5 to the vector cas

dJ*(t,x(t); r(t)) - Jt*dt + Jxdi(t) + ½ Tr(J*xd < x 0 xc.)

+ J*(t), R(t), r(t)) - J*(t,ý(t)) - J• Ax(t) (E-58)

where xc and Ax are the continuous and discontinuous parts of x, respect-

ively. From (E-46)

< Xc' Xc > W W1 0 W t'dt (E-59)

E-22
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Substituting (E-58) and (E-59) into (E-57)

min ^'R^ + u'Ru + JV(t,ý,i)(Ax + Bu) + ½ Tr(J* (t ,,o)Wi0 W'
U xx i I

0- + P * 0jJ*(ti(t), J) If t I, r(t) a I (E-60).,

|minr pijJ*(t,i(t), J) -J(t,xý(t'), I) if t I, r(t) I .

u j (E-61)

Note (E-61) is control independent.

If we assume that J* has the form

J*(t, ) • Kr + Pr (E-62)

then

u -R'IBIK x if R(t) - I (E-63)

Note that u in (E-63) is used for all t since I is discrete. Direct sub-

stitution of (E-62) and (E-63) into (E-60) yields (note E pij(t) Is 0 if

t ~I

K1 * -AIK - KiA - K IR' 1 BK + Q; i I i,...,N; t ý I

I II

K(T) a S (E-64)

p - -Np-r

p(T) - 0 (E-65)

where p is a vector with elements p1 and the ith element of r is

T ,r(KWI <v, v > WI) (E-66)

Equation (E-61) has somewhat different properties.

E-23
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Tj ... + Ai).. . Kj WF- 4-A )+ T~

• • plj(• (t')j(t-•(;) + Trl (t)Wj < V, v + Wj ÷P(t)

Since E Pij (t) * 1, if t ,

K (t) * KW(t) (E-67)

N(t)p(t) p(t') - r (E-68)

Combining (E-64) - (E-68),

K -AlK - KA - KBR"I BIK + Q; t 0 0, T (E-6g)

K(T) - S

p • .p r ; t I(E-70 )

p(t") N(t)p(t) + r; t • I

p(T) •0

u -R"1 'Kx

E-24
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APPENDIX F

FLIGHT TEST TRAJECTORY DESIGN BY SIMPLICIAL PIVOTING

F-1I. INTRODUCTION

This appendix describes the problem of weapon system flight test trajec-

tory design for the purpose of improving operational system performance

evaluation. It is shown that the observability of the principal reentry

guidance system errors can be substantially enhanced by trajectories

designed for this purpose. These errors are evaluated using a simulated
post flight analysis of the measurements made by the reentry vehicle in-

ertial measurement unit (RIMU) and by radar/camera ground sensors. The

result of this evaluation for a flight test trajectory is the covariance

matrix of the error in estimating the RIMU error sources. The measure of

improvement provided by a designed trajectory is a weighted functional of

this covariance matrix, where the weight assigned to each error source is

its contribution to the CEP of a candidate operational trajectory. The
search for a reentry trajectory which minimizes this functional and satis-

fies energy, vehicle, and instrumentation constraints is performed with a

simplicial pivoting algorithm. The problem is solved for each of two

RIMUs. First, the Small Hardened Inertial (gimballed) Platform (SHIP) is

considered, and second, the Dormant (strapdown) Inertial Navigation System
(DINS), with laser gyros is considered. The extent of SHIP and DINS error

parameter estimation capability during a flight test is derived. The results

show that significant improvement in the observability of SHIP principal

error parameters can be attained.

The operational weapon system and its RIMU principal performance contribu-

tors are descirbed in Sections 2 and 3 respectively. The flight testtrajectory design problem to improve error source estimation is defined in

Section 4. An approximate solution to this problem is sought by reducing

the number of variables and applying a mechanized algorithm. Section 5

discusses the selection of the simplicial pivoting algorithm to solve this

F-i
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reduced problem. Section 6 gives resuts of the trajectory design study by

comparing the parameter estimation realizable with the designed trajec-

tories with that from two candidate flight test trajectories. A brief

summary is given in Section 7.

F-2
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F-2. OPERATIONAL SYSTEM DESCRIPTION

The operational system considered consists of an aerodynamically con-

trolled reentry vehicle and a reentry inertial measurement unit (RIMU)

deployed from a Minuteman III booster with a NS-20 guidance system. The
NS-20 is modeled with the error sources and error source uncertainties

corresponding to current accuracy estimates. The RIMUs considered here

are the SHIP and the DINS platforms.

At launch, the RIMU is assumed coarsely aligned in azimuth and is aligned

about the level axes using its accelerometers. The RIMU navigates from
launch and is updated by comparisons with the more accurate NS-20.

The reentry navigation system is Initialized at reentry with a state

vector mapped from the estimated state at deployment and navigates through

the reentry phase of the mission.

F-2.1 SHIP Error Model

The SHIP is modeled with a total of 93 accelerometer, gyro, gimbal mass

unbalances, and platform compliance errors. The SHIP platform axes are

aligned to a downrange, crossrange, and up orientation at launch and the

accelerometer and gyro input axes are as shown in Figure F-1.

Accelerometer Error Model

The acceleration error for each accelerometer is modeled by:

AA- Ko0 + KIAi + Ks 1AI + Kol + Kdsign(AI + Ko)

+ K2A 2 + K3A1 3 + KipAIAp + KioAiA0 + K2oAo2

+ K2All Ail + KpA + KoA + $A + yA

21A pF 0- 0 L 0

F-3
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The coefficients for the error model and their description are:

Ko - bias

Ki - scale factor
Ks - absolute scale factor,

Kd - hysteresis bias shift

K2 - input axis quadratic nonlinearity

K3 - cubic nonlinearity

Kip - pendulous cross axis scale factor

Kio - output cross axis scale factor
K20 - output axis quadratic nonlinearity

K21 - input axis quadratic difference
KO - output cross axis bias

8 - input axis toward pendulous axis misalignment

y - input axis toward output axis misalignment

and the subscripts (i, p, o) denote the input,pendulous, and output axes of

the accelerometer.

Gyro Error Model

The drift rate error about the gyro input axis is modeled by:
D + DiAi + D0Ao + DsAs + D + 2 oAiAo

+ DsA A + C) Ao2 + D A 2 + D A A

The coefficients of the gyro error model are:

Df - fixed drift

Di - input axis mass unbalance

D - output axis mnss unblaIance

Ds - spin axis mass unbalance

D - compliance

F-5

I



LOGICON

Do compliance

Di- compliance

000 - complianceD - compliance
Dss- compliance
Do- compliance

where the subscripts (1, o, s) denote the input, output, and spin axes of
the gyro.

Gimbal Mass Unbalance Model

The gimbal mass unbalances give rise to misalignments about the platform x,

y, and z axes of the forms:

Misalignment 6 xy -Kxy AY

about x axis a K A
xz xz z

Misalignment eyx Kyx Ax

about y axis 'y - -K Az
yz yz

Misalignment U "-K zX Ax
about z axis - K A

Where the Ax, A A A are in platform coordinates.

Platform Compliance Model

Deformation of the platform caused by g-loading causes the accelerometers
to be misaligned with respect to their theoretical input axes. The errors
in acceleration caused by this deformation are modeled as:

i KiJkAjAk

F-6
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AA is the acceleration error along the ith axis caused by the

A and Ak accelerations.

Platform Alignment

The platform Is misaligned at launch by the angles ýx' ly' Iz about the

platform axes. The acceleration error due to the platform misalignment is

given by

SOy x X( t)

where • and EX are in platform coordinates.

F-2.2 DINS Error Model

Coordinate Systems

The orientation of the plate axes on the RV is given by

x a roll
y - pitch

z - yaw

The orientation of the DINS accelerometers and gyros is described in

Volume I1.

Accelerometer Error Model

The DINS accelerometer error model is given ir accelerometer coordinates

and is applied to all three accelerometers. The acceleration in accelero-

meter coordinates is denoted by

rAl
lAP
A OJ

F-7
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where the subscripts I, P, 0 refer to the input, pendulous, and output
axes which comprise the right-handed accelerometer coordinate system. The

angular rate about the accelerometer input, pendulous, and output axes is
denoted by

Wo

The acceleration error along the input axis Is given by

6AI K B + X ! + KpAp + K1A0 + KI2A12 + Kp2Ap2 + K02Ao2

+ K1 pA AP + K1 oA A0  + KopA AP + K 3A 3 + K 3Ap3

+ KWWIWP

The descriptions of the coefficients for the error model are:

KB - bias
Ki1 - scale factor

Kp - pendulous g sensitivity

KO - output g sensitivity
K12 - input quadratic nonlinearity

K P2 - pendulous quadratic nonlinearity

K0 2 - output quadratic nonlinearity

KIp - input-pendulous nonlinearity

K10 - input-output nonlinearity

KOP - output-pendulous nonlinearity

K13 - input cubic nonlinearity
KP3 - pendulous cubic nonlinearity

K0 3 - output cubic nonlinearity

Kw - anisoinertia

F-8
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Since DINS is a strapdown system, the accelerometers measure acceleration

in a coordinate frame which changes as the RV attitude changes. In order
to obtain the inertial velocity increments, the sensed body velocity
increments must be transformed into the inertial coordinate system. One
method of doing this would be to first transform the velocity increment
from the sensor (accelerometer) frame S to the body frame B by

a ES -- B3 As

where the sensor-to-body matrix CS -- B is constant in time. The incre-
mental velocity in body coordinates could then be transformed into the
Inertial system I by

a, - [B -P13 6B

where the body-to-inertial matrix [B.--1- is determined by the body
orientation, which in turn is obtained from the gyro measurements.

Gyro Error Model

The DINS gyro error model is given in gyro coordinates and is applied to

all three gyros. The acceleration in gyro coordinates is denoted by

S- Al

AK

where the 1, J, and K axes form a right-handed coordinate system. The
angular rate about the gyro I, J, and K axes is denoted by

S- W1

WK

Each gyro is designed to measure the rate about Its I axis (WI).

F-9
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The error in the measurement of rate is given by

"6W KB + KRW t + K W1 + KIAIWIAI + KIAjWIAJ

+ KIAKWIAK+ KjWJ + KKWK + KJAJWJAJ + KKAKWKAK

The descriptions of the coefficients for the error model are:

KB - fixed drift

KRW - random walk drift

K, - scale factor
!,[ KIAI

KIAJ acceleration sensitive scale factor

KIAK
K - misalignment to J

KK - mi sal Ignment to K

KJAJ - acceleration sensitive misalignment to J
K - acceleration sensitive misalignment to K

Plate Error Model

Deformation of the plate by g-loading causes the accelerometers to be

misaligned. Due to a lack of physical test data, a simple bending model

relating the structural compliance of the accelerometer cluster to the

g-loading was chosen. This model is the same as the SHIP platform compli-

ance model.

F-2.3 Candidate Operational Trajectory

The operational trajectory assumed for this analysis is the standard MMIII

-27.5 degree reentry angle accuracy studies trajectory terminated by a

mixture of yaw maneuvers and coasts. The reentry trajectory is depicted

in Figure F-2.

F-10
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F.3 IDENTIFICATION OF PRINCIPAL PERFORMANCE CONTRIBUTORS

The operational accuracy of a strategic missile system is calculated from

an error source budget since the system accuracy cannot be measured

directly in an operational environment with operational trajectories.

Thus, an error source budget is estimated in testing activities and the

system performance is calculated with error analysis techniques for the

operational case.

Therefore, the accuracy of the operational performance estimate depends on

the fidelity of the error source budget determined from testing activities

and the sensitivity of the calculated operational performance to varia-

tions in the error source magnitudes. This sensitivity depends both on

the magnitude of the particular error source value in comparison to the
remainder of the error sources and on the error sensitivity of the partic-

ular source. For example, in a system where the budget accuracy is

dominated by a single error source, a small change in the magnitude of

that source will cause significant change in the calculated accuracy. At

the same time for one of the smaller contributions, even though it might
have a large individual error uncertainty, the same percent change will

have a much smaller effect on calculated accuracy.

The criterion for selecting the principal performance contributors in this

analysis is the sensitivity of system CFEP to variations in the error

source magnitudes about a priori budget values.

The system sensitivities were evaluated using the Logicon System Error

Analysis Program (SEAP) which uses an extended Kalman filter to propdgate

system errors and to simulate the system measurement updates of in aided

system. SEAP operates as shown in Figure F-3 to evaluate the performance

of an optimal system mechanization.

F-12
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F- 3.1 SHIP Principal Performance Contributors

In the SHIP guidance system under consideration, the reentry systems

errors consist of the navigated position and velocity plus the 93 SHIP

error sources, while the navigation aid, the NS-2U, is modeled by 78

error source states in a filter state vector because of correlations from

measurement to measurement. The SEAP state vector is shown in Figure F-4.

The system sensitivities were calculated by perturbing the erro,- source

magnitude by a factor of 1U (making the magnitude larger) *nnd calculating

the resulting change in CEP.

The system sensitivities were first evaluated in groups to eliminate pos-

sible error sources from contention. The groups were formed based upon

the results of linear error analyses of the SHIP over the boost and re-

entry phases of the mission. For those groups not eliminated, the contri-

buting error sources were determined using subdivisions of the groups and

finally individual system CEP sensitivities were determined. For the sys-

tem and a priori error budget under consideration, the system sensitivity

magnitudes are dominated by 13 error sources. The 13 error sources with

the largest sensitivities and their sensitivities are given in Table F-1.

These significant sensitivities arise during the reentry phase since the

effects during boost are estimated by the inflight measurements. Error

sources, such as azimuth alignment which might be expected to appear among

the largest contributors do not because they are estimated by the inflight

measurements.

F-3.2 DINS Principal Performance Contributors

In the DINS guidance system, the reentry system errors consist of naviga-

ted position and velocity, initial misalignment and 96 DINS error sources.

The NS-2U errors are modeled as for SHIP. The SEAP state vector is as

shown in Figure F-4 except for an added random walk gyro drift, which is

modeled as described earlier.

F-14
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Table F-1. SHIP Pri ncipal Performance Contributor's

CEP Contribution
Source Number Description (t of System CEP)

I Gimbal Mass Imbalance about Z by Y 139

2 Y-Gyro DU 95
3 X-Accelerometer Bent to Y by Y 84

4 Z-Gyro D55  78

5 Z-Qro O0 56

6 X-Accelerometer Bent to Y by X 40

7 X-Gyro D10 39

8 Gimbal Mass Imbalance About X by Y 35

9 Y-Gyro D 1 35

10 X-Accelerometer Bent to Z by Z 35

11 Y-Gyro D 0  34

12 Z-Gyro D11  27

13 Z-Gyro DOS 27

*1000 increase in uncertainty

F-16
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As with SHIP, the significant system error contributions of the DINS plat-

form arise after the boost phase. The principal DINS error contributor

is the gyro scale factor which causes a misalignment at reentry. This

misalignment is substantial because of the many revolutions of the reentry

vehicle during free flight. Thus a small gyro scale factor error will

produce a large misalignment at reentry.

This misalignment is oriented principally along the average direction of

the roll axis during free flight. Since this direction is approximately

along the roll axis at reentry, the effect on CEP at impact is less for

the trajectories considered here than if the misalignment were about the

pitch or yaw axes. Consequently. the initial pitch and yaw misalignments,

though much smaller than the roll misalignment, have a comparable miss

contribution. The initial platform misalignments at reentry contribute

96% of the total DINS reentry CEP for the operational yaw-maneuvering

trajectory. Thus, the principal performance contributors considered for

the DINS guidance system are only the three initial platform misalignments

at reentry.

F-17
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F-4. FLIGHT TEST REENTRY TRAJECTORY DESIGN

F-4.1 Flight Test System

The system assumed for the flight test experiment is the flight test re-

entry vehicle deployed from a Minuteman I booster on a SAMTEC to Kwaja-

lein trajectory. For this analysis the reentry vehicle impact is assumed

to be in the lagoon where adequate ground sensor coverage is possible.

The flight test boost trajectory has a -26.7 degree reentry angle.

The boost guidance system is the NS-1O guidance set and each RIMU is a

less mature version of the operational RIMU. (Some of the error source

magnitudes are budgeted larger than those for the operational version.)

The flight test RIMU error model form is identical to the operational

model described earlier. Except, the SHIP platform axes are in a down-

range, crossrange, and down orientation at launch, and the DINS platform

axes are along roll, pitch, and yaw at reentry.

A set of three sensors has been chosen. Figure F-5 shows the locations

of the sensors and the assumed impact point. The three sensors are each

assumed to be a composite of a radar (for range measurement) and a camera

(for angle measurements) located at the sites shown. Ground sensor

measurement accuracy is assumed to be 20 ft (1 ) in range and 0.0030

(1a ) in azimuth and elevation. (In addition, the radars have bias and

scale factor modeled errors and the cameras have bias errors for azimuth

and elevation each with the equivalent corresponding la's at a range of

1O0,O00 ft.) The initial estimate of the reentry vehicle state at re-

entry is assumed to be derived from this ground sensor data.

The assumed vehicle is a bank-to-turn vehicle so that the controls avail-

able are normal acceleration, an, and the bank angle, 0. The accelera-

tion due to aerodynamic drag on the vehicle is partially a function of

the normal acceleration. The vehicle is subject to contraints on normal

acceleration magnitude, integral of acceleration, and impact Mach number.

F-18
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F-4.2 The Identification Problem

The RIMU and ground sensor state error variables are taken to be of the

bias form, i.e.

- RIMU

( eSENSOR

where the vector eRIMU contains the RIMU error parameters to be identi-
fied and the vector 6SENSOR contains the ground sensor non-random error
parameters.

The measurement equation is

Z(t) - H(t,u) • + v(t)

where

E(v(t)vT(t')- R(t) 6(t V '

F-4.2.1 Observability of SHIP Error Sources

It is instructive to examine the form of the SHIP errors. The SHIP
error sources can be divided into gyro and non-gyro errors. In platform
coordinates, the SHIP acceleration errors can be shown to be of the fol-

lowing forms.

Non-Gyro Errors

N1: E-i(t) = ej

N2: ,YAl(t) - OiAk(t)

N3: TA-A(t) - eiAk( t)AZ(t)

-: F-20
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Gyro Errors

G: ZAi•(t). - atBiXA(t)

G2 •-Ai(t) - ei Ai(,r)d-c BiT(t)

'0
t

G3 : 'A(t) - 1 f Ak(T)AL(T)dT BiX(t)

0

where Ak and A are the k and t. components of the acceleration A and

[0 dJ 3  'j 21

BI " .6j3  0 dil

dj2  -ail 0 J

is a misalignment matrix corresponding to a rotation about a predefined jth

axis for the ith error source.

If a velocity measurement is to be made, the observable for the ith SHIP

error source is

t

WV1(t) f E~(T d-r
0 A,

and for a position measurement

f- t f T
~1(t) J J A&(s) dsdT

0 0

The non-gravitational acceleration in platform coordinates is a function ot

the normal acceleration and bank ingle control.

F-21
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At the time of maneuver initiation on the flight test trajectory, the

vehicle drag is nearly along the platform negative z-axis and yaw maneu-

vers will produce platform y-accelerations while pitch maneuvers produce

x-accelerations.

Figure F-6 depicts the non-gravitational acceleration in platform

coordinates for the flight test trajectory equivalent to the assumed

operational trajectory (a yaw-maneuvering trajectory). For the yaw-

maneuvering trajectory, drag and the yaw-accelerations produce primarily

ay and az inputs to the SHIP error dynamics. It can be seen that for
nine of the error sources, including the five most important, little

separation in the output channel can be achieved by the yaw-maneuvering

trajectory. On this trajectory error sources 6 and 13 have virtually no

output. In contrast, for a combined ax, az (pitching maneuver), a three-
way channel separation can be achieved for five of the error sources.

This observation, coupled with the realization that a pitch-up maneuver

tends to extend flight time and thus the numbor'of measurements, suggests

that pitching maneuvers may be advantageous. It is also clear that more

output channel separation would be achieved by the use of maneuvers which

induce accelerations along all three platform axes. Thus high accelera-

tion and "zig-zag" type maneuvers are desirable for SHIP error source

observabi I i ty.

F-4.2.2 Observability of DINS Error Sources

To enhance the observability of the principal DINS error sources, namely

the initial platform misalignments at reentry, by using radar/camera

measurements, a trajectory with a large dispersion from the ballistic

impact point is desired. This can be accomplished by a large yaw maneu-

ver in one direction. Thus the DINS principal error sources, in con-

trast to those of SHIP, are easily observable.
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F-4.3 Input Design Techniques

The problem under investigation here is to improve the identification of

the RIMU error sources by varying the test flight trajectory, and as such,

is an input design problem. This problem area has been the subject of

much statistical and engineering literature. A common approach, which is

somewhat independent of the estimator invoked, is to use the Fisher infor-

mation matrix, M, as a measure of the information on 0 provided by a feas-

ible input. The reason for its use is that it is computatlonally attrac-

tive and its inverse, termed the Cramer-Rao lower bound, provides a "good"

lower bound on the covariance of 8 for all regular unbiased estimators.

(Here, regular refers to certain modest regularity assumptions on the dis-

tribution of the observations, Rao (1965).) The solution sought opti-

mizes some objective functional of M or M", for example a weighted trace

or determinant, Mehra-Gupta (1974).

The general problem considered in the literature is of the form

X F(t,e) X + G(t,e) u ; Y a H(t,O) X + v (F-1)

where

X is the state vector

u is the input control vector

6 is the vector of unknown parameters

v is a white noise vector with zero mean and covariance R.

Making use of the additive type control, various objective functionals

can be expressed as

J(u) 1< Tu, u >ý
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where u belongs to some Hilbert space H, II ul 1 and T is some

normal, compact bounded linear operator on H. An optimal input u then

is max J(u), which is satisfied by the u corresponding to the largest
utH

eigenialue (in absolute value) of T (see p.313 of Rudin (1973), Gupta and

Hall (1975)).

The problem considered here does not fall into the form of (F-i) since it

is not linear in the control u. Consequently, it cannot be solved by

applying the above technique. In fact, here H is a function of u and is
sufficiently nonconvex in u so as not to guarantee convergence to an opti-
mal input of any general optimization algorithm. As a result, optimiza-

tion techniques, based on certain necessary conditions for solution, are

used in the present problem.

Commonly, a linear functional of the information matrix M is chosen for

the objective functional, since for the general problem (F-1), M is a

quadratic function of u. The drawback with maximization of diagonal ele-

ments of M is that the off-diagonal elements can become large, in which

case the diagonal elements of M' can increase. This fact, in conjunc-

tion with the nonconvexity of H in u for the problem here caused the

choice of a linear functional of the covariance matrix as the objective

functional to be minimized. This function is defined next.

F-4.4 Trajectory Performance Criterion

The performance function chosen for the trajectory design problem here is

J a tr (WTWPf)U WPfWT E E(weGTwT)

where Pf is the final covariance of the RIMU error parameters after

estimation.
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W is a r'ow vector of sensitivities of the candidate operational system

error contributions with respect to error source uncertainty. Table F-2

gives these weights for SHIP when multiplied by the initial error source
uncertainities and normalized to 1.0. The normalized weights used for the
initial roll, pitch, and yaw mnisalignments of the DINS platform when mui-

F-4.5 The TraJectory Design Problem

The flight test trajectory design problem formulated above is

Min WPfWT
ufU

Table F-2. SHIP Performance Criterion Weights*

Error Source Weights

r.1 0.192

2 0.132

3 0.116

4 0.108

5 0.077
6 -0.055

7 0.053
8 ~0.048 *

9 -U.048

10 U.048
11 0.047

12 0.038
13 0.038

*Normal j zd to 1.0
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where

U is the set of autopilot of control commands satisfying

vehicle and instrumentation constraints, and yielding

reentry trajectories with a sufficiently high velocity at

impact

W is a vector of weights based on the contribution of 8 to

the operational trajectory CEP

Pf is the covariance of the RIMU error sources after estima-

tion using the measurements

The form of the measurement is:

Z(t) - H(t,u) T + v(t)

where

Z(t) is the difference between the telemetered RIMU output

and radar/camera ground measurements

H(t,u) is the matrix of sensitivities to the RIMU and

radar/camera error sources,

v(t) is the measurement white noise with covariance R(t)

This problem is a "highly" nonlinear optimization problem over the Banach

space of continuous control functions ucU and is too unwieldy to solve.

Consequently, an approximate solution is sought. First, a finite dimen-

sional approximation to the space of control functions is defined by

considering only step function control commands which are defined over

the following six time intervals.

19.0 * 22.0

22.0 - 24.0

24.0 " 26.0

26.0 * 28.0
28.0 * 30.5

30.5 * 34.5
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The control commands are specified as a nonnal acceleration and a bank

angle during each time I nterva 1. So. the allowable control command space

has been reduced to a twelve dimensional euclidean space. Second, in

order to decrease the cost of the reevaluation of Pf, the number of error

sources considered is decreased from the full model to the principal

operational error sources plus the three initial misalignments. Third,

an efficient reentry trajectory generator was developed to approximate

the more costly complete 3 DOF flight test trajectory simulator.

This reduced trajectory design problem is still a highly nonlinear con-

strained optimization problem, but the number of variables have been dra-

matically cut to make the problem manageable.

The procedure hereir, iý to apply the simplicial pivoting algorithm to

the reduced traject,-y 'iesign problem for SHIP and for DINS and then

determine the improvement of this designed trajectory over two current

candidate flight test trajectories using the full model estimator and

trajectory generator.

4
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F-5. THE SIMPLICIAL PIVOTING ALGORITHM

In this section the rational behind the selection of the simplicial pivot-

Ing algorithm to solve the reduced trajectory design problem is given and

the development of the algorithm to the problem is described. The

rational used here is the same as would be used in attacking a variety of

optimi zati on problems.

F-6.1 Selection of an Optimization Algorithm

The methods available tb solve constrainted optimization algorithms can

be classified into gradlent-type and direct-search methods. The charac-

teristics of the problem at hand are used to determine the appropriate
type of algorithm to apply.

F-5.1.1 The Two Classes of Algorithms

Gradient-type algorithms are those which require the use of a derivative,

or an increasingly accurate "approximate" derivative, of the objective or
constraint functionals. These algorithms require more computations per
iteration than the direct-search algorithms, but for "well-behaved" prob-
lems they have a faster convergence rate as well as conditions for
"optimality" of the solution. Gradient-type algorithms are divided into
two classes - those which solve a sequence of uncontrained problems
formed by adding a sequence of penalty functions and those which generate
a sequence of feasible-descent steps.

Penalty functions are added to the objective functional or to the Lagrangian
of the problem in an effort to increasingly penalize candidatu solutions
which are noar the constraints or infeasible. Feasible-descent directions

are commonly generated by using a minimum norm projection onto the feasible
set of a descent direction such as V-J or -H'VJ. In the case of non-
linear constraints the projection is frequently performed onto the inter-
section of the tangent hyperplanes of the "'-active" constraints at the

point.
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In many optimization problems analytical derivatives are not available

and finite difference approximations involve excessive computational

cost. Consequently, direct-search algorithms based only on the values of

the objective functional and the constraints have been widely used.

These algorithms are easy to implement and are applicable to a broad

class of problems. They are aimed at finding "good" solutions since opti-

mality conditions are usually sacrificed for improved efficiency. Though

the rate of convergence is generally slower than for a gradient-type

method, the lower computational cost per iteration, which Is indicative

of direct-search methods, provides for better overall efficiency in many

problems.

F-5.1.2 Trajectory Design Problem Characteristics

The choice of the type of algorithm to use depends on the properties of

the problem at hand.

The characteristics of the reduced trajectory design problem which are

important in algorithm selection are the following:

1.) The objective functional Jr (u) and the trajectory con-

straints are "highly" nonlinear in the trajectory control

variable u.

2) The gradients of Jr (u) are costly to compute.

3) Due to inflight perturbations in the commanded trajectory

a 'precise" solution is not necessary.

4) The dominant cost of solution is the functional evaluation

of Jr(U),

5) The trajectory control solution space is twelve dimen-

sional euclidean space.

Properties 1, 2, and 3 of this problem indicate that a direct-search

algorithm will perform better here than a gradient-type algorithm.

Properties 4 and 5 will help in determining which type of direct-search

algorithm to choose.
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F-5. 1.3 Direct-Search Algorithms

The first type of direct-search algorithm to be considered is the method

of local variations, see Banitchouk (1966). This method is based on a

progressively finer partitioning of the feasible set. From xK the algo-
K KKrithm samples adjacent vertices of the partition, x + a , until fori J, J(x K + aJKpJK) < J(xK). Then xK÷1 a XK + 4 KP J K. When such an

imrovement is no longer possible, the i are reduced (i.e., the mesh

of the partition is reduced) and the algorithm pivots on a finer partition

(see Figure F-7 for an example). For the unconstrained problem, the accu-

mulation points x* of these x ) are shown, under reasonable assumptions,

to satisfy 4C(o*) a 0.

The standard partition is an orthogonal one, but, if possible, it is

better to choose a partition where there are P 's along the constraint
boundaries. When the constraints are nonlinear a penalty function tech-

nique should be added. The purpose of this is to help avoid a "Jamming"

of the algorithm at a boundary point which is not near a solution.

The DSC method (see Swann (1972)) is like the above method except that
mutually orthogonal search directions are rotated according to the prog-

ress made after trying all the search directions. For example, in the

case of a linear constraint violation, the boundary point is estimated

j and the normal to the constraint is taken as one of the search directions

with the others chosen orthogonal to it. (This is usually called self-

bounding.) Such methods which change the search directions sacrifice the

partitioning and the corresponding convergence proof of local variations

for a more efficient boundary following search scheme. Since there is no

longer a partition to ensure no cycling, the DSC method uses a single-

step parameter for its search and it is reduced when it is greater than

the total progress made after a full cycle of search directions.

A simpler approach is a Monte Carlo method (see Luus and Jaakola (1973))

where m search directions are selected at random. The algorithm pivots
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* I Figure F-7. Method of Local Variations
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to the best feasible of these arid then a new set of reduced size Is

again selected at random. This method, however, seems to require an

excessive number of function evaluations.

Powell's (1964) conjugate direction method searches on a set of directions

which are updated each iteration using the total progress vector P, only

if exchanging it with a current search direction increases the value of

4 which is characteristic of a conjugate direction with respect to a quad-

ratic approximation of J. Namely, if J - 1/2 xTHx + a x and if the search

directions {P(: i a 1,...,n) satisfy ,/2pT HP1 - 1, then the determinant,

4, of the matrix P composed of Pi's takes its maximum when the P1 are
mutually conjugate (i.e., P THP a 0). Simple tests can be derived toI c g
determine which P1 to replace by P for maximum increase in 4. The genera-

tion of the search directions P1 is based on n-dimensional minimizations
and the following easily-derived fact.

If the minimum of a quadratic J in a direction P from yi is at xi for
i a 1,2 then x2 - x1 is a conjugate direction to P. A basic iteration

for an initial guess x0 and (Pl,*.,Pn) is

1) Define xi a xl.1 + o Pi where 0i minimizes f(xi.i + ciPl)

for i a 1,...,n. 4

2) Define P1  i+1' Pn a Xn "X' and replace x0 by x0 + IPn
The purpose of evaluating A is to help avoid the directions P1 from becom-

ing linearly dependent. A simpler way to avoid this is to reinitialize

every n+1 iterations.

A method which does not require the 1-dimensional minimizations as des-

cribed above is the pattern search method (see Hooke and Jeeves (1961)).

This method searches from xK along xK xK'l a distance x-xK' II to

obtain a point yK, from which n-iterations of a local variation-type pivot-

ing is performed to obtain xK÷I. An example is shown in Figure F-8 for

n 2.
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There are many constraint-fol lowing schemes (see iOass ind Cooper ( 19b5)

the purposes of which atre to avoid "jainni ng." Some ot these include:

searching along a pattern direction as long as there is improvement,

local variations along tangent hyperplanes to active constraints, and

gradient projection techniques.

The probes yK are allowed to be nonfeasible In the hope that local varia-

tions pivoting will produce a feasible point, if not, local variations

are performed around xK, If these variations fail the step size is

reduced. As an additional aid, penalty functions have been used as des-

cribed earlier. Nevertheless, in higher dimensional problems, pattern

search is not as effective in determing appropriate pattern directions

and seems to be more prone to "Jamming."

Some of the methods which are more flexible in selecting search direc-

tions are the simplicial pivoting methods (see Spendley, Hext, and

Himsworth (1962), Box (1965), and Keefer (19731).

To approximate solutions to minimization problems on an n-dimension

euclidean space, Rn, simplicial pivoting algorithms store the value of

the objective functional, J, at n+1 points (VI : i, ... , n + 0.

Pivoting from these points is accomplished by dropping the point VJ with

the largest value of J and adding the point V* obtained by reflecting

V through the centroid, c, of the remaining points. Namely,J

v* a 2c - V

where

n+1

Cu- J Vi/n

i-L
iOJ
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The convex hull of (V: I 1, .... , n + I1 forms a closed n-simplex.

The simplicial pivoting just defined is depicted for n-2 in Figure F-9.

In the algorithm this pivoting continues until V* is infeasible or J(V*)

is also the largest value of J when compared with the other vertices of

the n-simplex. When this occurs a new vertex is generated by reflecting

Vi through the vertex Vk with the best value of J, namely Vj - 2Vk " V .

If J(Vj ) is again the largest, then Vj is dropped and simplicial pivot-

ing is performed on the remaining n-i-simplex. The purpose of this is to

cause the algorithm to follow the valley or constraint which is assumed to

be approximately orthogonal to V* - V
j jo

To help avoid "jamming"on the constraint boundaries a penalty function is

added to the objective functional which increasingly penalizes points

near the constraints. The penalty function is chosen so as to form a

valley between the constraints on fhe interior which the algorithm can

follow. To aid in this and thereby increase the rate of convergence,

mesh expansion logic can be included to increase the size of the pivoting

steps along directions "locally" parallel to the contraints.

F-5.1.4 A Comparison of Direct-Search Algorithms

The direct-search al.gorithm to be applied to the reduced trajectory

design problem is chosen based on the characteristics of the problem.

The Monte Carlo method is ruled out since information on previously eval-

uated trajectories should be used to aid in selecting a new trajectory in

order to cut down on the prohibitive cost of trying to cover the space of

feasible trajectories. Also, the conjugate directions method does not

seem appropriate due to the nonquadratic nature of J and the cost of

1-dimensioned minimizations.

The methods of local variations, pattern search and simplicial pivoting

can be compared on the basis of the amount of memory of previously evalu-

ated trajectories that each possesses. The method of local variations

F-3b
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FIgure F-9, Silmpiicial Pivoting Method
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and pattern search have 1 and 2 point memories respectively. Whereas,

simplicial pivoting has a n+1 point memory where n here is twelve. Due

to the dominant cost of functional evaluation, the relative cost of this

memory Is negligible. Thus, since the simplicial pivoting method pro-

vides a better current local approximation of J(u) without noticable addi-

tional cost, it should better select a new pivoting direction in which to

proceed. Also, the improvement techniques (i.e. penalty functions, con-

straint following, and mesh variation) of local variations and pattern

search have their counterparts in the simplicial pivoting algorithm.

Consequently, a simplicial pivoting algorithm was selected to be applied

to the reduced trajectory design problem.

F-5.2 The Simpliclal Pivoting Algorithm

In this section the application of the simplicial pivoting algorithm to

the reduced trajectory design problem is described. The pivoting Is per-

formed with twelve dimensional simplicies where each dimension represents

a commanded normal acceleration or bank angle over one of the six trajec-

tory time intervals specified above. The initial simplex is generated

using a method of local variations from the starting trajectory comprised

of 10% max g's changes in the yaw commands and 5% max g's changes in the

pitch commands. The objective functional Jr was evaluated for each of

the thirteen verticies and a penalty function based on the velocity at

impact was added to each Jr. More precisely the total cost Cr for the

trajectory specified at each vertex was evaluated as follows:

C1(i) - [1 + 10/(V(i) - VB)] Jr(i)

where

V(1) is the velocity at impact of the ith vertex

and V(i) > VB + 10.

V8 is the smallest allowable velocity at impact in ft/sec

If V(i) V + 10 then Cr(i) is assigned a large number.
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The vertex V of the simplex with the largest Cr is dropped. If this

vertex is an allowable trajectory a new vertex is added by reflecting it

through the centroid, C, (i.e., center of mass) of the remaining vertices.

Namely, the now vertex, V*, is C+(C-V On the other hand, when V is

not an allowable trajectory or it was the last to be added, it is replaced

first by the reflection of it through the vertex with the smallest Cr with

the step cut in half. Namely, V - Vk + 1/2(Vk-j. If this last replace-

ment V* is not an allowable trajectory then it is dropped and pivoting is

resumed on the remaining simplex of one lower dimension.
I

Mesh expansion is Incorporated whenever the newly added vertex, V*, has J
the smallest Cr and the decrease in the velocity at impact is not too

large. Namely, V a C + 2(C-Vi) whenever V-Vi).- V(VV v(v*) -
(VB+ 100) where V(VT) is the velocity at impact of the trajectory V*.

These mesh reduction and expansion schemes help, respectively, to flat-

ten the simplex along directions which cause V(i) to decrease too rapidly

and lengthen the simplex along directions which improve Cr () while not

decreasing V(i) too rapidly.

In addition to computing the performance criteria J a WPWT, the algorithm
13r

also computes the weighted trace Tr -, Wi 2P1  as a measure of per-
1.1

formance independent of any correlations set up between the error sources.

When desired, the algorithm will optimize with respect to Tr instead of Jr.
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F-6. RIMU PARAMETER ESTIMATION PERFORMANCE

In this section the performance of the estimation of the principal RIMU

error sources, after comparing RIMU data and radar/camera ground sensor

data, is described for various simulated flight test trajectories. Re-

sults are presented for SHIP and for DINS. The estimator used in this

analysis is a version of the USAF/ABRES post-flight data reduction Ex-

tended Kalman Filter estimator operating in a covariance-only mode so that

synthetic data is not required. Estimation performance is first evaluated
for the principal error model state used in the reduced trajectory design

problem and then for the full error model state. The measure of perform-

ance used is the trajectory performance criterion J a WP WT defined earlier.

13
~'2In addition the value of the weighted trace T - W P i vIi is given for

each trajectory as an altirnate measure of performance which disregards

correlations.

F-6.1 SHIP Parameter Estimation Performance

The results of the SHIP flight test trajectory design for the purpose of

improving the estimation ot the principal performance contributors are

presented in two parts. First, the trajectories designed by the simpli-

clal pivoting algorithm using the 16 state reduce, order model are com-

pared with the two candidate flight test trajectories. Second, the full
SHIP and radar/camera error models are applied to determine the error

source parameter estimation performance of each trajectory. The results

show a designed trajectory with 66% and 78% improvement in the full model

weighted performance criterion over the two candidate flight test trajec-
tories, respectively.
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F-6.1.1 SHIP Trajectory Design Results

This section gives the results of applying the simplicial pivoting

algorithm to the reduced trajectory design problem. The algorithm was

initiated from the operational yaw maneuvering trajectory, on which the

performance weightings are based, the two candidate AMaRV flight test tra-

jectories, and a ballistic trajectory. The commanded normal acceleration

and bank angles as a function time for these trajectories are given in
Tables F-3, F-4, and F-5. Forty simplicial pivots were made from each of

these trajectories. The performance results using the 16 state vector are

summarized in Table F-6. Tables F-7, F-8, F-9, and F-10 give the result-

ing designed trajectories from the simplicial pivoting algorithm.

Of the four initial simplicial pivoting results,the trajectory designed

from the candidate operational yaw maneuvering trajectory performed the

best. Consequently, the algorithm was applied from this trajectory two
more times at 40 pivots each. The first application yielded a trajectory

with a Jr n 0.035 and the next application yielded the trajectory called

Design A, described In Table F-11, with a Jr a 0.018 and a Tr a 0.80. To

check for an approximate local solution the algorithm was applied again
for 40 steps from this Design A trajectory. The resulting Design B tra-

jectory defined in Table F-12 had Jr m 0.016 and Tr - 0.80. Since the

additional improvement in Jr was minimal, the minimization was stopped

here with a 97% improvement of Jr over the yaw maneuvering trajectory.

Next, the simplicial pivoting algorithm was applied to the minimization

of the weighted trace Tr for the reduced trajectory design problem which

was defined above. As expected, the improvement In Tr is not as dramatic

as that for Jr since correlations set up in the measurements do not affect

the value of T r. The minimization of T. was initiated at the Design A

trajectory. The resulting trajectory after forty pivots is described in
Table F-13 and has Tr * 0.76. This trajectory is similar to the Design A
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Table F-3. Yaw Maneuvering Trajectory

T ,(seconds) A (% maximum) 0(degl

17.7 67 90

20,4 0 90
;.24.6 100O 90

2640 100 -90

28.5 0 -90

Table F-4. Flight Test Trajectory #1

T (seconds) A (% maximum) U(qj

19.8 67 90

24.8 0 -75
26.8 67 -75

29.8 0 180

31.8 67 180

33.9 0 180

Table F-S. Flight Test Trajectory #2

T (seconds) A (% maximum) ______

17.8 47 180

21.3 0 0
26.3 100 0

27.6 0 90

28.5 100 90
30. 67 180
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Table F-6., Jr SHIP Optimization Results After 40 Steps

Initial After 40 Pivots
J T J Tr

Yaw Maneuvering 0.525 1.07 0.103 0.875

Flight Test #1 0.85 1.15 0.44 0.86

Flight Test #2 0.60 1.52 0.256 1.24

Ballistic 2.22 2.24 0.17 1.07

Table F-7. Trajectory Designed With Initialization at Yaw-Maneuvering

T (seconds) A (% maximum)- *(delI

18.0 13 61
20.5 11 -45.6

22.0 20 -39

24.0 100 91

26.0 97 -98

28.0 38 -153

29.0 43 128

30.5 27 76.b

34.5 0 76.5
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Table F-8. Trajectory Designed from Flight Test #1

T (snds) A (% maximum) 0(deg)

19.0 23 83.6
22.0 31 87.5

23.0 61 90.3

25.5 7 -81

27.0 97 -86.8

30.0 25 97

32.0 74 159

34.0 0 140L1
Table F-9. Trajectory Designed from Flight Test #2

T (seconds) A (%,maximum) 0(deg)

18.0 15 176

20.0 37 178

21.5 10 -33.8

24.0 11 5.6

26.0 100 93.6

30.0 67 176.5

Table F-10. Trajectory Designed from Ballistic Trajectory

T (seconds) A (%I maximum) _•egi

19. 0.9 3
22 75. - 60

24 67. 90

26 50. 100

28 33. -112

30.5 11. 96.6

34.5 0. 96.6
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Table F-li. SHIP Design A Trajectory

T (seconds) A (% maximum) 0(deg)

19 4 -53

22 31 -34

24 100 98.3

26 100 -96

28 94 133

30.5 6 91
34.5 0 180

Table F-12. SHIP Design B Trajectory

T (seconds) A (% maximum) .I(dog)

19 5 -42.6

22 36 -35.2

24 100 96.4
26 100 -93.8

28 100 138.2
30.5 26 92.9

34.5 0 76.

Table F-13. Trajectory Design Using Tr

T (seconds) A i% maximum) COO

19 10 -63

22 30 -26

24 97 101.5

26 99 -96

28 100 129

30.5 23 90.2
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trajectory and, as will be seen, its performance with the full error model
is expected to be nearly the same. as that for the Design A trajectory.

The reason for this is the significant degrddation in thle final Covari-

ance Pf of the significant error sources caused when the error sources

neglected in the reduced design problem are added. The extent of this

degradation from the 97% and Z9% improvements in Jr and T respectively

for the reduced design problem will be described next.

F-6.1.2 SHIP Parameter Estimation Results

In this section the SHIP parameter estimation performance using the full

filter model is determined for the yaw maneuvering trajectory, the two

candidate flight test trajectories, and for the Design A and Design B

trajectories described above. Each reentry trajectory is simulated with

a detailed 3 DOF AMaRV vehicle simulator initialized with the nominal

flight test reentry state. The full filter state vector includes 90 RIMU

error sources, 12 ground sensor error sources, and 9 states for initial

position, velocity, and misalignment. The full state estimator results
measured in terms of J and T are given in Table F-14. A comparison of the
improvement in the SHIP principal performnance parameter 1a's for the tra-

jectories is summarized in Table F-1S. In terms of the trajectory perform-

ance criterion J, the Design A trajectory represents a 49% improveiment in

the yaw-maneuvering trajectory and a 66'i and 78%t improvement in tile flight

test 41 and *2 trajectories respectively.

Table F-14. Full State Estimator Results

Velocity at Impact

J T (1, of Minimum)

Yaw Maneuvering 0.731 1.40 132

Flight Test #1 .1.11 1.6I 1.37

Flight Test *2 1.70 2.04 152

Design A 0.376 1.27 115

Design B 0.394 1.26 112
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Table F-15. SHIP Principal Parameter Estimation

Percent change in Ic Values from Initial values

Error Source Yaw Maneuvering AMaRY #1 AMaRV 02 Design A Design B

1 19.0 13.7 6.3 34.2 34.3

2 47.0 26.2 3.8 34.4 32.5
3 6.3 5.1 1.7 9.0 8.6
4 30.5 22.0 2.2 28.7 29.8
5 16.5 21.5 13.2 16.5 17.7

6 4.6 6.2 4.1 8.9 10.1
7 51.6 23.8 1.9 32.4 27.2
8 38.3 27.1 7.2 46.8 45.3

9 2.4 4.2 3.3 2.9 2.7

10 3.5 5.5 6.3 5.9 7.3

11 6.0 6.2 12.4 7.3 10.1
12 3.4 5.3 7.9 5.0 4.3

13 2.7 11.1 0.6 6.8 4.7

S57.0 57.5 66.0 46.5 48.5
33.6 36.3 69.1 52.4 54.5
34.0 47.0 58.8 51.4 54.1
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F-6.2 DINS Parameter Estimation Performance

The results of the DINS flight test design for improving principal para-

meter estimation performance are presented in two parts. First, the

trajectory design by the simplicial pivoting algorithm using the three

state reduced order model is compared with the two candidate flight test

trajectories. Second, the full DINS and radar/camera error models are

applied to determine the error source parameter estimation performance
of each trajectory. The results show a 49% and an 80% improvement in

the performance criterion over the flight test #1 and #2 trajectories,

respectively.

F-6.2.1 DINS Trajectory Design Results

The simplicial pivoting algorithm was applied to the DINS traJjictory de-

sign problem with the reduced model consisting of the initial misalign-

ments. The algorithm was started with the ballistic trajectory. After

forty pivots the trajectory performance criterion, J, was reduced to

0.096 with a 1 directional yaw-type trajectory. From here forty more

pivots were made to decrease J to 0.066. The resulting DINS design tra-

Jectory is described in Table F-16. A value of J and the weighted trace

T for this designed trajectory and the other selected trajectories are

compared in Table F-17. No further minimization of J was performed be-

cause the misalignments are very observable with almost all non-ballistic

trajectories The degree with which the observability varies is depicted
in the following section for the above trajectories.

F-6.2.2 DINS Parameter Estimation Results

The full 110 state DINS error model, the twelve radar/camera error states,

and a detailed 3 DOF trajectory simulation were used to drive the Kalman
filter which determined the parameter estimation performance. The values
of the velocity at impact, the performance criterion J, and the weighted
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Table F-16. DINS Design Trajectory

T (seconds) A (. maximum) i(deg)

19. 25. 65.
22. 59. 57.

24. 32. 76.
26. 37. 134.

28. 35. 91.

30.5 64. 93.

34.5 0. 96.

Table F-17. DINS Reduced State Trajectory Design Performance

Yaw DINS
Maneuvering Ballistic Flight Test #1 Flight Test #2 Design

J 0.096 795. 0.24 0.76 0.066
T 0.099 906. 0.16 0.33 0.037

24
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trace of the covariance matrix of the error at impact for the selected

trajectories are given in Table F-18. A comparison of the accuracy of the

DINS platform misalignment estimates derived for each trajectory using the

full model is given in Table F-19. As a result, DINS design trajectory

exhibits a 49% and 80% improvement in J over the flight test #1 and #2

trajectories, respectively.
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Table F-18. DINS Full State Estimator Results

Yaw DINS
Maneuverin Flight Test #1 Flight Test #2 Djjjs

Velocity at 132 137 152 101
Impact
(% of minimum)

35.5 14.9 39.0 7.6

T 29.1 14.6 38.6 19.4

Table F-19. DINS Principal Parameter Estimation

(% change in lo values from initial)

Yaw
Maneuvering Flight Test #1 Flight Test #2 Design

91.3 93.4 92.6 97.4

Pitch 76.4 85.2 73.9 84.5

Yaw 80.6 85.0 72.8 76.4

F
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F-7. SUMMARY

An approach lo the design of flight test trajectories for the observation

of RIMU guidance system errors has been formulated. The approach entailed

a determination of the principal operational performance contributors and

the design of a flight test trajectory to increase the observability of

these principal error sources. A simplicial pivoting algorithm has been

developed to perform this and trajectories have been designed with SHIP

and with DINS as the RIMU. The results show a 66% and 78% Improvement of

the SHIP performance criterion and a 49% and 80% improvement of the DINS
performance criterion over the flight: test #1 and #2 trajectories, respec-

tively. Also, the full covariance of the error in estimating the RIMU

and ground sensor errors has been generated for each RIMU and for each of

the selected trajectories.
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APPENDIX G
FREE-FLIGHT FILTERING

G-1. Measurement Equations

In order to improve alignment using free-flight filtering, the attitude

and sensed velocity obtained from the DINS gyros and accelerometers must

be compared with the attitude and sensed velocity calculated from body

dynamics. Using state space notation, the measurement at time 1 is

expressed as

*zt , Hi d1 i " Y-t (G-I)

where the measurement z_ and the state vector •x are given in differential

notation to indicate that these quantities are errors about the nominal

values.

In Figure G-1, the free-flight filtering state vector is given. By treat-

Ing the position, velocity, and alignment errors as initial errors, the

entire free-flight state vector consists entirely of bias states, thus

eliminating the need for performing a time propagation between measurement

updates. At the end of free-flight filtering, the contribution of DINS

errors to the present position, velocity, and alignment errors is easily

calculated and added to the state vector. In practice, the G&G errors of

Figure G-1 are not included in the free-flight state vector since they do

not contribute to alignment or sensed velocity errors. Their contribution

to the total position and velocity errors is calculated independently and

is then added directly to the position and velocity errors at the appropri-

ate time.

For the case of a combined angle and sensed velocity update, the free-

flight filtering measurement vector is the difference between the DINS

calculated values and the body dynamics calculated values and Is given

by
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S~o Initial ECI position and velocity error

Initial DINS alignment errors

EOANS DINS accelerometer errors
ax-

EDINS DINS gyro errors
-G

•o Body dynamics errors

-G&G G&G errors

Figure G-1. Freeflight Filtering State Vector

G-2



LUGICO_

[ YOINS -43D1
6I z a (G-2)

L DINS - '.8O

Each individual term can be expressed as the sum of the actual value plus

an error term:

V-OINS " IActual " '!DINS * 6'Quant (G-3)
YD 0 !A"-ctual + a•-,D

!DINS a -Actual + •2-INS + 6i•uant
040D * AActual + 61.BD

The quantization errors, which are due to the finite instrument scale
factors, are separated from the other errors In these equations. Substi-
tuting equation (G-3) into equation (G-2), the measurement equation
becomes 

-a• • (G-4)

6LO INS - 69D + 6huant J
Since all error states are treated as bias errors here, the velocity and
alignment errors as a function of time are given by

av _-DINS + v • DINS

%~INS a1jýMEA +HDINS -G-
-A -

D (G-5)

ONS al -AN al D INS
DIS IUIA -N

ae

~BDBD
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Substituting these expressions for the velocity and alignment errors into
equation (G-4), we obtain

3V DINS 'I EDINS 'V
DINS AINS G r-BD + -Quant
-A -80 G-6)

EN 36 E DINS a 0E
3E INS-A aE DNS G 3tL -80 !6&Quant

Comparing equations (G-1) and (G-6), the measurement matrix H is seen to be

3V D V aV

H i- (G-7)

-1 
36

aaE ' -18D
:-A 11-G

and the measurement noise v is seen to be

-Quant I_-(G-8)
-Quant

This measurement matrix and the covariance of this measurement noise are

incorporated into a Kalman filter (Appendix C) to update the state vector.
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G-2. Body ODnamics

In order to calculate the free-flight filter H matrix, the sensitivity of

velocity and angle errors to the error state vector must first be calcula-

ted. The sensitivity to the DINS error state is obtained from the DINS

error equations (Section 3.2.3). To obtain the sensitivity to the body

dynamics errors, body dynamics error equations are needed. Before deriv-

ing the body dynamics error equations, the nominal equations for calcula-

ting attitude and sensed velocity will be presented.

Euler's equation, modified to the case of zero external torque, can be

used to compute the RV attitude during free-flight. The equation is
written as

+1p [1 x] [1] *0 5 (G-9)

The subscript p indicates that these quantities are to be calculated in

the coordinate frame of the principal axes of the RV. Brackets are used

to denote matrix (or tensor) operations, and the symbol CIZ corresponds

to the matrix which results in the indicated cross product operation.

The equation for sensed velocity is given by

/b Ob xwb x Tb ) + 'b x 7 b(G-IO)

where the subscript b indicates that these quantities are to be calculated

in a coordinate frame fixed with respect to the body. The first term on
the right hand side of the equation is the centripetal acceleration. As

a result of the coning motion, wb is nonzero, and both terms on the right

hand side of the equation therefore contribute to the sensed velocity.

In the computer simulation, error equations for body dynamics are used to

compute angle and sensed velocity errors directly. The error equations
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are obtained by taking small perturbations. about the nominal body dynamics
equations (G-9) and (G-10). The resulting equations are:

w I P c P• - - L x j] Z5 + [ I * ]' J[X] SI

J (G-l ])

do I

SVb 2" [1 ] x zy x au, [I .B wrx] W

where a rate error in inertial coordinatesf
- alignment error In inertial coordinates

67V - sensed velocity error in body coordinates

[I.*P] - coordinate transformation from inertial to principal
axis coordinates

[I-B) - coordinate transformation from inertial to body
coordi nates

61p - error in magnitude of moment inertia about principal
axes

sp a alignment error of principal axes

ap
[] - sensitivitv of rate error derivative about orinci-

"p oal axes to di

* - sensitivity of rate error derivative about princi-
p pal axes to 6 p
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The quantities (X] and [4p can be calculated in a straightforward manner
p

from equation (G-9). First, we write the equation for each componens of

the vector equation separately:

Dp2 -DI3:-

lp" I p3 Wp2

p2 Ipi 4)p I . p
[p2 o2 Wp2 Wp3

p3 Ip3

Then, t{;] is seen to be

D2 1 03 102 13

0 1 p, p1 (G-12)

0I PI " t Pl " P20

L Ip3 pP2 1 p3 'P

[]is given by

2p Ip2 p2

1 1 P1W'7 p 'p2 " W p l (pl 'Jp3p2I p2 Ip2 p

1p3 p3 1p3
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Since the natri x E\J is singular', there is some 1 i•near combinatioon of the

moment of inertia states that is nonobservable. To improve the filter

stability, it is desirable to choose a different basis in which one of I
the states is explicitly nonobservable. While there are many possible

choices for such a basis, the one that was chosen is the following:

61 Pi.!
SI P3

p2

p3

P2

where the subscript m indicates that the state vector has been modified.

The new sensitivity Cm] becomes

p3 u P2 p p

P 2 p. PC 0

J 'P (U ___ P -. L IWP (G-14)

--

(1) I WP -P 7 -P WP LI 1

p3 113I
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It is apparent from equation (G-14) that 51,0 is nonobservable, This is

not surprising since a change in the value of 6Im3 (SIm, and 61mz remain-
ing constant) corresponds to the same proportional change in each of 6 1pI,

610, and 61p3. Since Euler's equation does not depend on the total magni-
tude of the moment of inertia but only on the relative sizes of the indi-
vidual components, the state 61m3 does not affect body dynamics and is

thus nonobservable.
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G-3. Computer Organization

A flow diagram indicating the computer programs used in free-flight fil-

tering is shown Figure G-2. The free-flight simulation program FFSIM

uses quaternions to calculate the body attitude as a function of time.

To calculate the vehicle position and velocity, FFSIM employs a spherical

harmonic expansion of the earth's gravitational field. The body dynamics

program BODYN uses the error equations of Section G-Z to calculate the

body dynamics measurement matrices as a function of time, while the linear

error analysis program LEAP uses the DINS error model of Section 3.2.3.1
to calculate the DINS transition and measurement matrices as a function

of time. The system error analysis program SEAP incorporates the LEAP

and BODYN outputs into a Kalman filter to obtain several measures of the

system performance, including inflight alignment performance and inflight

calibration performance of the DINS and body dynamics error sources.
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